Молниеотвод: устройство, разновидности и принцип работы

Молниезащита. Виды, характеристики, назначение и доказательство необходимости

Введение

Вопрос защиты от прямых ударов молнии становится актуальнее с каждым днем. Согласно прогнозам, увеличение числа гроз (грозовой активности) связано с потеплением климата и растет на 10 % на каждый градус, (по другим данным — увеличивается на 12 ±5 % на каждый градус) глобального потепления и в итоге возрастет примерно на 50 % в течение этого столетия.

Опасность молнии и необходимость защиты от нее людям известна с древности. Если ещё в относительно недавние времена основной опасностью удара молнии были пожары и физические повреждения зданий, вызванные ее термическим и механическим воздействием, то развитие электронной техники и всеобщая цифровизация жизни закономерно ставят дополнительный вопрос защиты электронной аппаратуры от импульсных перенапряжений, вызванных воздействием молнии.

Статистика

Согласно собранной компанией «Электра» статистике, за период с 2014 по 2020 годы в России произошло 4375 пожаров, причиной которых явился удар молнии (грозовой разряд). В них погибло 19 человек и 44 получили травм различной степени тяжести. При этом по сравнению с 638 случаями в 2019 году, количество таких пожаров в 2020 году увеличилось на 153 (24 %) и составило 791.

Каждый такой инцидент — не просто несчастный случай, но ещё и дополнительные расходы как владельцев пострадавших объектов (в большинстве случаев значительно превышающие стоимость системы молниезащиты), так и средств федерального и областных бюджетов.

В грозовой период новости пестрят информацией о погибших и пострадавших от удара молнии. К примеру, только в 2020 году таких случаев насчитывается более 27, в 2021 году — уже 5. Молния не щадит и домашних животных — на фермах, в конюшнях и пасущихся в поле. Только за 2020 год в разных регионах России погибли более 100 животных.

Необходимость молниезащиты

Наиболее эффективным способом борьбы с прямым ударом молнии и ее вторичными проявлениями было и остается применение систем молниезащиты, назначение которых — переориентирование от защищаемого объекта и непосредственный прием прямого разряда, распределение и рассеяние тока молнии в земле. Они состоят из внешней молниезащиты или молниеотвода, включающего в себя молниеприемник, токоотвод и систему заземления, и внутренней — УЗИП, предупреждающие прорыв тока молнии в объект.

Необходимость устройства молниезащиты зданий, сооружений и оборудования определены Федеральным законом от 22.07. 2008 № 123-ФЗ «Технический регламент о требованиях пожарной безопасности» как один из способов предупреждения пожаров и иными законодательными нормами Российской Федерации в области пожарной безопасности.

Традиционно для молниезащиты (грозозащиты) использовались проверенные практикой классические стержневые и тросовые молниеотводы, а также молниеприемная сетка.

Немного истории

Сегодня считается, что молниеотвод изобрел Бенджамин Франклин. Более 250 лет назад, в 1752 году, он экспериментально доказал электрическую природу молнии и предложил способ защиты от нее с помощью заземленного металлического стержня.

Самый старый в мире молниеотвод, из известных сохранившихся, находится в России, на построенной в первой половине 18-го века знаменитой Невьянской башне в городе Невьянск Свердловской области.

Молниеотвод на Невьянской башне

На вершине башни расположен заземленный, через каркас здания, металлический шпиль с покрытым шипами металлическим шаром и расположенным чуть ниже флюгером, на котором выбит дворянский герб Демидовых. Разные источники называют даты окончания постройки башни между 1721 и 1742 годами, то есть, как минимум за 10 лет до изобретения молниеотвода Франклином.

Действующие нормативы

На сегодняшний день в России действуют три основных нормативных документа по традиционной или классической/пассивной молниезащите:

  • РД 34.21.121-74 «Руководящие указания по расчету зон защиты стержневых и тросовых молниеотводов»,
  • РД 34.21.122-87 «Инструкция по устройству молниезащиты зданий и сооружений»,
  • СО 153-34.21.122-2003 «Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций».

Совместное применение последних двух наиболее часто используемых в практике современной молниезащиты определено письмом Ростехнадзора от 01.12.2004 № 10-03-04/182. Этими нормативными документами определен порядок проектирования, монтажа, эксплуатации и технического обслуживания классических систем пассивной молниезащиты — тросовых, стержневых и сетчатых.

Важнейшей характеристикой любых систем молниезащиты является надежность защиты от прямого удара молнии, то есть величина, определяемая как 1-Р, где Р — вероятность прорыва в процентах прямого удара молнии к объекту, находящемуся в пределах зоны защиты молниеотвода.

Таблица 1. Надежность защиты от прямого удара молнии определена СО 153-34.21.122-2003

Уровень защиты Надежность защиты
I 0,98
II 0,95
III 0,90
IV 0,80

Зоны защиты классических молниеотводов

Наиболее распространены в мировой практике стержневые молниеотводы, отлично защищающие различные объекты на протяжении более чем 260 лет. Зоной защиты одиночного стержневого молниеотвода, согласно РД 34.21.122-87 и СО 153-34.21.122-2003 является конус с прямолинейной образующей. Вершина конуса находится на оси молниеотвода и расположена ниже вершины молниеприемника.

Размеры зоны защиты (высота и радиус защиты на уровне земли) зависят от заданной надежности защиты и от высоты молниеотвода. Добавим, что эта зависимость — линейная (см. схему ниже).

Зона защиты стержневого молниеотвода

Объект считается защищенным с заданной надежностью от прямого удара молнии, если целиком располагается внутри зоны защиты молниеотвода.

Объект полностью находится в зоне защиты молниеотвода. Фронтальная и горизонтальная проекции

Зона защиты одиночного тросового молниеотвода в данных нормативах рассчитывается как зона защиты большого количества стержневых молниеотводов, расположенных в линию заданной длины.

Кроме того, в СО 153-34.21.122-2003 определена возможность проектирования зон защиты молниеотводов по защитному углу или методом катящейся сферы согласно стандарту Международной электротехнической комиссии (IEC 62305) при условии, что расчетные требования Международной электротехнической комиссии оказываются более жесткими. При этом, в отличие от РД 34.21.122-87 и СО 153-34.21.122-2003, высота молниеотвода определяется от горизонтальной поверхности, которая будет защищена.

Читайте также:
Крепление панелей ПВХ на потолок своими руками на кухне

Активные молниеприемники МОЭС

В последние 25 лет стали популярны так называемые «активные» молниеприемники, обладающие более высокой степенью надежности и расширенной зоной защиты.

Для справки
Образование молнии начинается с формирования нисходящего от облака в направлении Земли лидера, представляющего собой проводящий плазменный канал. В настоящее время считается, что зарождение лидера в грозовом облаке не зависит от наличия на поверхности земли каких-либо объектов (неровностей рельефа, строительных конструкций и т. п.).
Продвигающийся к земле нисходящий ступенчатый лидер молнии инициирует появление и развитие направленных к грозовому облаку встречных (восходящих) лидеров как с наземных объектов: элементов крыши, архитектурных форм, оборудования на крыше и стенах и т. п., так и с установленных молниеприемников. Соприкосновение одного из них с нисходящим лидером определяет место удара молнии в землю или какой-либо объект.
Исходя из этого, роль системы молниезащиты, с точки зрения развития восходящего лидера, заключается в формировании устойчивого восходящего лидера с вершины молниеприемника раньше, чем с любых элементов наземного объекта. Являясь основным элементом системы молниезащиты, в функцию которого как раз и входит инициация и развитие устойчивого восходящего лидера ранее, чем от элементов объекта, молниеприемник должен создавать для этого оптимальные условия. Известно, что в условиях конкурирующего развития восходящих лидеров от элементов объекта и молниеприемников, более ранний устойчивый лидер подавляет возникновение остальных. Момент начала формирования на вершине молниеприемника восходящего лидера соответствует началу ориентировки молнии к молниеприемнику. Задачу опережающего формирования восходящего лидера от молниеприемника ранее чем от элементов защищаемого объекта с успехом решают системы защиты от прямого удара молнии с использованием молниеприемников с опережающей эмиссией стримера или, если кратко, МОЭС (англ. ESEAT — Early streamer emission air terminal). Другое распространенное название в России — активный молниеприемник.

Принцип действия МОЭС. Кратко

Рассмотрим принцип действия МОЭС на примере молниеприемников Forend производства турецкой компании Forend Elektrik A. S. В этом случае основой МОЭС является генератор высоковольтных импульсов, расположенный в корпусе с острием. Такое устройство монтируются на здании, сооружении или отдельно стоящей мачте и создает зону защиты от прямого удара молнии для всех объектов, в том числе, антенн и архитектурно-ландшафтных объектов кровли.

При возникновении определенных условий за счет разницы потенциалов между нисходящим лидером и поверхностью земли, генератор начинает вырабатывать высоковольтные импульсы. Как следствие, за доли секунды до разряда молнии на острие молниеприемника начинается эмиссия заряженных частиц и возникает стримерная вспышка, образующая встречный восходящий разряд — лидер с зарядом, противоположным заряду грозового облака. При этом для работы генератора не требуется использование внешнего источника питания. В ряде моделей МОЭС использованы поддерживающие ионизацию активные и пассивные электроды.

За счет принудительной генерации, опережающей стримерной вспышки и формирования восходящего лидера, увеличивается эффективная высота МОЭС по сравнению с классическим пассивным молниеприемником, в результате чего перехват нисходящего лидера молнии осуществляется раньше. Как следствие, увеличивается размер зоны защиты наземных объектов. В результате, при прочих равных, с классическими «пассивными» системами, условиях, удается обойтись меньшим количеством молниеприемников и токоотводов и/или меньшей высотой установки МОЭС.

Элементы системы молниезащиты

Система молниезащиты с МОЭС аналогична классическим пассивным системам и включает в себя элементы, указанные на рисунке ниже.

Элементы системы молниезащиты и защищаемого объекта

Примечание
Соединение токоотвод-заземлитель, а также горизонтального и вертикального заземлителей должно выполняться в смотровом (инспекционном) колодце.

Технические характеристики МОЭС

Корпус активной молниезащиты, как правило, изготовлен из нержавеющей стали, что позволяет обеспечить устойчивость к коррозии. Аэродинамическая конструкция МОЭС позволяет, как и классическим стержневым молниеприемникам, с успехом противостоять давлению ветра при грозе.

Разные типы корпусов МОЭС на примере молниеприемников Forend

Зоны защиты МОЭС

Основной характеристикой МОЭС является время опережения — ΔT, измеряемая в микросекундах. Другими словами, это разница во времени инициирования устойчивого восходящего лидера от МОЭС ранее, чем от «пассивного» молниеприемника аналогичной высоты. Этот параметр определяется экспериментально для каждого типа молниеприемника при моделировании реальных условий грозовой деятельности в лаборатории высокого напряжения.

Выбор конкретной модели МОЭС зависит от характеристик защищаемого объекта, требуемого уровня защиты, радиуса зоны защиты и высоты установки молниеприемника. Радиус (Rp) защиты МОЭС зависит от времени опережения (ΔT) и высоты (h) его установки.

Таблица 2. Зависимость радиуса защиты МОЭС от основных его характеристик

Rp, м T= 30 мкс T = 45 мкс T = 60 мкс
h, м уровень 1 уровень 2 уровень 3 уровень 4 уровень 1 уровень 2 уровень 3 уровень 4 уровень 1 уровень 2 уровень 3 уровень 4
2 19 22 25 28 25 28 32 36 31 35 39 43
4 38 44 51 57 51 57 64 72 63 69 78 85
5 48 55 63 71 63 71 81 89 79 86 97 107
6 48 55 64 72 63 71 81 90 79 87 97 107
8 49 56 65 73 64 72 82 91 79 87 98 108
10 49 57 66 75 64 72 83 92 79 88 99 109
20 50 59 71 81 65 74 86 97 80 89 102 113
30 50 60 73 85 65 75 89 101 80 90 104 116
60 50 60 75 90 65 75 90 105 80 90 105 120

Как видно из приведенной таблицы, оптимальным, с точки зрения размеров зоны защиты и финансовых затрат, является установка МОЭС на высоте 6 метров над самой верхней точки защищаемого объекта. Радиус защиты, который в отдельных случаях может доходить до 107 метров, МОЭС позволяет одним молниеприемником обеспечить защиту площади до 36 тыс. кв. м с большей надежностью, чем классические виды пассивных молниеотводов. При необходимости защиты здания большей площади можно использовать 2-3 таких молниеприемника.

Читайте также:
Каркасные дома фото

Количество молниеприемников

Сравним зоны защиты МОЭС Forend EU (ΔT=60 мкс) с зоной защиты стержневого молниеотвода. Радиус защиты данного устройства на 6-метровой мачте составляет 97 метров для III уровня защиты (наиболее распространен). В то же время рассчитанный по защитному углу стандарта IEC 62305-3:2010 для стержневого молниеприемника той же высоты (высота мачты+высота корпуса МОЭС=6,5 метров) радиус зоны защиты составит 15,3 метра (угол при вершине α=67 о ).

Для защиты здания размерами 48×180 метров необходимо использовать либо один расположенный в центре крыши здания активный молниеприемник, либо двадцать классических стержневых молниеприемников той же высоты.

Схема соотношения активной молниезащиты (слева) к пассивной (справа)

Еще более наглядно выглядит пример защиты нескольких близко расположенных зданий. Так, для защиты сооружений, стоящих неподалёку друг от друга, размеры одного из которых 48×90, а другого — 48×160, достаточно всего одного МОЭС типа Forend EU либо тридцать восемь классических стержневых молниеприемников той же высоты.

Активная защита двух близкорасположенных зданий в сравнении с пассивной

Размеры зоны защиты МОЭС позволяют уменьшить по сравнению с классическими пассивными системами молниезащиты общее количество молниеприемников на протяженных территориях и крупных объектах, а также снизить объем и общую стоимость материалов и работ при их возведении и ежегодном техническом обслуживании.

Перспективы

В конце 2020 года принят межгосударственный стандарт по системам молниезащиты с опережающей эмиссией стримера — ГОСТ 34696-2020 «Системы молниезащиты с опережающей эмиссией стримера. Технические требования и методы испытаний», определяющий порядок применения указанных систем. Есть надежда, что данный норматив вскоре будет введен в действие на территории России.

В настоящее время компанией «Электра», как одной из разработчиков ГОСТ 34696-2020, создана «Инструкция по защите от прямого удара молнии зданий, сооружений и открытых территорий системами с опережающей эмиссией стримера. Проектирование, монтаж, эксплуатация и техническое обслуживание». Документ представляет собой переработанный и дополненный собственный аутентичный технический перевод на русский язык стандарта Франции NF C 17-102 (редакция от сентября 2011 года) с французского и английского языков. Одновременно использованы применимые для МОЭС общие положения, термины, определения, требования и методы испытаний из государственных стандартов ГОСТ Р, распространяющихся на классические пассивные системы молниезащиты.

Применение упомянутой выше инструкции на территории Российской Федерации рекомендовано письмом СЦНТИ РЭА Министерства энергетики Российской Федерации от 22.09.2020 № 46.

Оптимальное решение

При проектировании молниезащиты необходимо сочетание эффективности защиты и экономичности проекта. При этом финансовая составляющая зачастую наиболее важна для заказчика, и является определяющим параметром в выборе между различными проектными решениями при прочих равных условиях.

Оптимальный выбор молниеприемников и их расположение на защищаемом объекте позволит также снизить затраты на прочие материалы (токоотводы в первую очередь) и земляные работы при устройстве заземления молниезащиты. Так, для отвода тока молнии в случае применения МОЭС необходимо всего два токоотвода на каждый из них. В то же время, при использовании классических пассивных молниеприемников, большее количество вертикальных, расположенных по стенам здания, токоотводов и грамотная конструкция заземлителей способствует более равномерному распределению тока молнии и стабильности электромагнитной обстановки внутри здания.

Безусловно, молниеприемники МОЭС не смогут полностью заменить традиционные, проверенные сотней лет, стержневые и тросовые молниеотводы. Оба продукта должны сосуществовать одновременно, а применение того или иного должно обуславливаться, прежде всего, эффективностью и целесообразностью финансовых затрат на защиту от риска прямого удара молнии.

Источник: Компания «Электра»

Молниеотвод: устройство, принцип работы, разновидности и монтаж

В большинстве случаев молния действует предсказуемо, несмотря даже на полную непредсказуемость этого природного явления – она не выбирает цель, а бьет непосредственно в самый высокий предмет. В общем, если ваш дом является самым высоким строением в радиусе 200-300м, то молниеотвод окажется не лишним дополнением к вашему дому. Именно он убережет вас от неприятных, а иногда очень опасных исходов, связанных с прямым попаданием молнии в дом. О нем и пойдет речь в этой статье, в которой вместе с сайтом stroisovety.org мы ответим на следующие вопросы: какие бывают молниеотводы, как они устроены и как изготавливаются своими руками?

Молниеотвод: разновидности и их конструкции

В принципе, конструкция молниеотвода представляет собой бесхитростный механизм, состоящий из трех простейших частей, изготовить которые самостоятельно и собрать в единую систему не представляет никаких сложностей.

  1. Приемник молнии – это железный элемент, поднимаемый на несколько метров выше крыши строения. Размещаться он может как непосредственно на самом строении, так и рядом с ним, неподалеку.
  2. Токоотвод. По сути, это толстая стальная или медная жила, по которой ток, полученный от разряда попавшей в приемник молнии, передается в контур заземления.
  3. Заземляющий контур. Его назначение простое – именно с его помощью разряд молнии передается в землю, где он и гаснет, не причиняя постройкам и человеку никакого вреда.

Так устроены все виды молниеотводов без исключения. Причем два элемента этого устройства все время остаются неизменными – это токоотвод и контур заземления. На разновидности этих приспособлений оказывает влияние исключительно конструкция приемника молний, о которых мы и поговорим дальше.

  1. Стержневой молниеприемник. Это устройство знакомо практически всем жителям частного сектора – оно представляет собой обыкновенную металлическую мачту, поднятую на пару метров над верхним краем крыши. Такая мачта может стоять как на крыше дома, так и немного в стороне от постройки или рядом, вдоль стены дома. Фактически отдельно стоящий молниеприемник в плане изготовления более простой – сама мачта одновременно является и приемником грозовых разрядов и токоотводом. Она напрямую подключается к контуру заземления самым что ни на есть жестким способом (сваркой).
Читайте также:
Краска Капарол: преимущества продукции, свойства материалов для внутренней и внешней отделки

Стержневой молниеотвод фото

Тросовый молниеотвод фото

Сетчатый молниеотвод фото

Этих основных конструкций улавливателей молнии вполне достаточно для того, чтобы полностью защитить свой дом от такого природного явления, как молния.

Молниеотвод в частном доме и его контур заземления

По большому счету, заземление молниеотводов устроено аналогичным образом, как и контур заземления самого дома – здесь следует сразу понять один момент, что эти два контура не должны быть связаны между собой – это два отдельных элемента. Подключив молниеотвод к контуру заземления дома, вы рискуете в один момент потерять не то что все электрооборудование, а и вообще весь дом целиком – для защиты от грозовых разрядов придется оборудовать отдельное заземление.

Изготавливается оно практически точно так же, как и заземление дома, за исключением некоторых отличий.

  1. Глубина (или длина) заземляющих электродов – она не может быть менее 3000мм.
  2. Сами электроды должны иметь сечение не менее 25мм и представлять собой цельный металлический прут.
  3. Если контур заземления дома может иметь линейное расположение электродов, то здесь важно соблюсти именно их треугольное расположение.
  4. Расстояние между вершинами этого треугольника должно составлять 3000мм.
  5. Шина, соединяющая электроды в единый контур, должна иметь диаметр не менее 12мм (если это прут или арматура) и 50х6мм, если речь идет о металлической полосе.
  6. Самое главное – это качественные сварные соединения, которые по своей длине должны составлять не менее 200мм.

Заземление молниеотводов фото

Как видите, между контуром заземления дома и такой же частью молниеотвода общий только принцип – требования к этим элементам защиты разнятся. Еще один момент, объединяющий эти две системы, заключается в глубине их залегания – верхняя часть контура располагается на глубине 500-800мм над поверхностью грунта.

Устройство молниеотвода: как соединить заземление и приемник молний

Токоотводящая или, правильнее сказать, токопередающая часть молниеотвода является не менее важным элементом, чем его заземление и сам приемник молний – вы только представьте, что случится с домом, если этот элемент устройства просто не выдержит нагрузку и сгорит. В таком случае все грозовые разряды попадут в дом, и тогда от беды может спасти только чудо. Именно по этой причине к токопроводящей шине следует отнестись не менее серьезно, чем ко всему другому. Здесь имеется всего два важных момента, которые нужно соблюсти, как говорится, беспрекословно.

  1. Сечение токоотвода – оно не должно быть менее 6мм, если речь идет о цельной (монолитной) медной жиле и не менее 10мм, если для отведения грозовых разрядов используется стальной прут.
  2. Соединение токоотводящей шины с заземлением и приемником молний. В значительной мере дело облегчается, если система целиком изготавливается из стали – в такой ситуации все соединения производятся с помощью сварки. Опять же, здесь важна длина сварного соединения – при стыковке токоотводящей шины к контуру заземления и приемнику провар должен иметь длину не менее 600мм. Если речь идет о медной жиле, то здесь придется действовать с помощью специальных клемм, которые представляют собой пластины с ложбинками для кабеля, соединяющиеся друг с другом посредством винтов.

Монтаж молниеотвода фото

Что же касается крепления токоотводящей жилы к стенам строения, то здесь используются пластиковые клипсы. В идеале, чтобы сохранить молниепровод в целостности в течение долгого времени, его лучше изолировать от окружающей среды, поместив в обыкновенный кабель канал.

В принципе, это все, остается добавить не так уж и много. А именно о таких моментах, как молниезащита отдельных элементов крыши. Если имеется дымоход, то вокруг него нужно намотать хотя бы пару витков отводящей ток жилы и соединить ее с общим молниеотводом. Также в защите нуждаются и все элементы кровли, изготовленные из металла – к примеру, отводящие воду желоба и трубы. Только в таком случае изготовленный самостоятельно молниеотвод будет являться надежной защитой дома от грозовых разрядов.

Конструкция молниезащиты

Объект: . Офис

Площадь: . 42 м.кв

Необходимо было переоборудовать одну из квартир в нашем доме под офис ТСЖ. По рекомендациям было принято решение обратиться в Энерджи.

Объект: . Квартира

Площадь: . 58 м.кв

Я-мама трех дочек. С переездом в новую квартиру в Москве столкнулись с проблемой, как разместить троих детей в одной комнате и при этом.

Объект: . Дом

Площадь: . 680 м.кв

Моя детская мечта, обзавестись своим большим домом, и вот этот момент наступил! Мы с мужем начали думать над проектом, как все будет, что.

Объект: . Дом

Площадь: . 280 м.кв

С женой решили переехать и заняться строительством нового дома. Понадобилась помощь в проектировании инженерных систем. Долго искали.

Объект: . Квартира

Площадь: . 156 м.кв

Заказывала дизайн-проект проект, для квартиры с инженерными проектами в комплекте. Сама не хотела ничего подобного делать и вообще в этом.

Объект: . Дом

Площадь: . 64 м.кв

Давно с мужем мечтали о загородном доме. Купили участок с домом, но дизайн интерьера в нем нам совсем не нравился, мы решили сделать ремонт.

Объект: . Квартира

Площадь: . 68 м.кв

После приобретения квартиры столкнулись с необходимостью ремонта. По совету знакомых мы обратились в ENERGY-SYSTEM. В минимально сжатые.

Объект: . Дом

Площадь: . 98 м.кв

Срочно понадобился проект перепланировки загородного дома. Перебрала кучу компаний, но везде дорого, либо не успевают сделать в назначенный.

Объект: . Квартира

Площадь: . 64 м.кв

Родители на свадьбу подарили нам трехкомнатную квартиру. Но сама квартира была в таком ужасном состоянии, что я даже не знала с чего начать.

Объект: . Стоматология

Площадь: . 54 м.кв

Решила открыть частную стоматологию, о которой мечтала с детства. Взяла в аренду помещение, нужен был дизайн-проект, обратилась в Энерджи.

Молниезащита зданий

Любое здание, будь то офисное, промышленное или же жилое может принять на себя электрический разряд молнии. Риск заключается не только в прямом попадании разряда в здание, а и в импульсном перенапряжении, которое происходит во время разряда. Наличие в домах большого количества электрооборудования только усугубляет ситуацию.

Поэтому во время строительства, проектирования различных инженерных систем, подключения электричества должное внимание надо уделить конструкции молниезащиты здания. При отсутствии грамотной организации молниезащита зданий и сооружений, пожарную безопасность объекта практически невозможно гарантировать. Также проблематично обеспечить безаварийную работу электрических систем и электрооборудования. Молниезащита – обязательный элемент зданий.

В период проектирование электроснабжения, когда происходит проектирование молниезащиты зданий и сооружений определяется тип оборудования, его расположение на объекте и высота, на которой будет установлено оборудование.

Принцип действия молниезащиты

На сегодняшний момент молниезащита зданий делится на активную и пассивную. Принцип действия активной системы молниезащиты заключается в ионизации молниеприемником воздуха благодаря чему перехватывается электрический разряд молнии. Радиус действия активной защиты достигает 100 метров. Соответственно и ее стоимость будет гораздо выше, чем у пассивной молниезащиты.

Вторая, пассивная система защиты, более традиционная. Работает такая система по стандартной схеме. У нее довольной простой принцип действия: молниеотвод улавливает заряд, далее, по токоотводу заряд переходит на заземлитель и дальше уходит в землю.

Основные элементы молниезащиты

В состав молниезащиты входит следующее оборудование:

Молниеприемник, это не что иное, как металлическая токопроводящая мачта (проводник). Устанавливается такой проводник в самой высокой точке здания, то есть в месте наиболее вероятного удара молнии. В случае если здание имеет сложную архитектурную форму и конструктивные особенности, целесообразно устанавливать несколько молниеприемников.

Конструктивно молниепремники могут иметь следующие типы:

1. В роли молниеприемка служит металлический трос.

Вдоль конька крыши устанавливают две небольшие опоры, на которые натягивают трос. Высота опор должна быть около 2 метров. В случае использования металлических опор, их необходимо изолировать от троса.

2.Молниезащитная сетка. Также закрепляется на коньке крыши здания. Такой вид защиты подходит для черепичных крыш.

3.Молниезащитой служит металлический штырь. Его площадь сечения должна составлять не менее 100 кв. мм, а длина от 0,2 до 1,5 метра. Устанавливается на самую высокую точку здания. Верхний конец трубы (штыря) следует заварить. Такой вид молниезащиты, как нельзя лучше, подходит для металлических кровель.

Все виды молниезащиты в обязательном порядке должны иметь контакт со всеми металлическими предметами и частями крыши.

Затем молниеприемник присоединяется к токоотводу.

Токоотвод служит магистралью для передачи высоковольтного заряда молнии от молниеприемника к контуру заземления. Он представляет собой стальную проволоку, приваренную к молниеприемнику. Толщина такой проволоки должна быть не менее 6 мм. С крыши, токоотвод опускают вдоль стен, непосредственно к контуру заземления. Токоотвод запрещено переламывать и изгибать, так как в таких положениях возникает искровой заряд, что влечет за собой возникновение пожара. Длина токоотвода должна быть максимально короткой. При спуске токоотвода, следует избегать его близкого расположения к дверям и окнам.

Устройство, обеспечивающее надежный контакт земли и токоотвода, называется заземлением молниезащиты. Конструктивно, схема заземления представляет собой связанные друг с другом и забитые в грунт электроды.

Следует помнить, что располагать заземлитель необходимо не ближе одного метра от стен и не менее пяти, от окон, дверей и пешеходных тропинок.

Закапывать заземление следует на глубину не менее двух метров.

Летом, заземляющее устройство необходимо увлажнять, так как в сухой земле уменьшается электропроводимость. Легче всего это сделать, направив на участок, где проложено заземление, водосток с крыши.

Как увеличить работоспособность молниезащиты?

В месте установки заземления, в грунте высверливается несколько отверстий, в которые засыпают селитру и техническую соль. Эти компоненты будут способствовать увеличению электропроводимости и хорошему функционированию громоотвода.

Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости выполнения электромонтажных работ.

Молниеотводы – назначение, виды, преимущества

Молниеотводы — специальные устройства, которые устанавливаются на сооружениях и зданиях для предохранения от молнии. Они подбираются с учетом условий использования и различаются особенностями конструкции, материалом изготовления и другими параметрами.

Характеристики молниеотводов и способы предохранения сооружений и зданий от молнии на территории РФ определяют инструкции РД 34.21.122-87 и СО 153-34.21.122-2003. При разработке систем, защищающих различные объекты от негативных внешних воздействий, следуют положениям одного из нормативных документов или используют их комбинацию.

Назначение молниеотводов

Во время грозы наблюдается возникновение разрядов атмосферного электричества, которые являются источником повышенной опасности для наземных сооружений и зданий, поскольку могут вызвать взрывы, разрушения и появление возгораний. Молниеотводы относятся к внешней системе защиты и предохраняют от прямых ударов молний, обеспечивая отвод тока в грунт. Они состоят из следующих элементов:

  • Молниеприемника, который используется для захвата молнии и устанавливается в зонах возможного контакта с электрическими разрядами.
  • Токоотвода, соединяющего молниеприемник и заземлитель и отводящий ток на заземление. Обычно в его качестве служит медный или алюминиевый провод большого сечения. Для изоляции токоотвода от внешних воздействий используют кабель-канал из пластика.
  • Заземлителя, который обеспечивает отвод тока в грунт и располагается в толще земли.

Важно! Функционирование молниеотводов основано на том, что чаще всего молния поражает только заземленные сооружения из металла, имеющие наибольшую высоту по сравнению с близлежащими постройками. Правильный выбор устройств позволяет обеспечить надежную защиту сооружений и зданий разного назначения.

Виды и характеристики

Молниеотводы, которые относятся к пассивным системам предохранения от молний, различаются вариантом исполнения молнеприемника. В зависимости от особенностей конструкции они бывают:

  • Стержневые. Такие устройства являются наиболее распространенными благодаря простоте монтажа и низкой себестоимости. Они выполняются в виде одного или нескольких стержней и могут устанавливаться непосредственно на объекте или на некотором удалении. Для крепления служат несущие конструкции здания или опорные конструкции, которые возводятся специально для монтажа молниеприемника. Длина стержневых систем зависит от материала изготовления и может варьироваться от 30 см до нескольких метров.
  • Тросовые. Идеально подходят для защиты невысоких объектов, узких или длинных зданий, высоковольтных ЛЭП и сооружений с нестандартной кровлей. Тросовые системы эффективнее стержневых конструкций и обеспечивают возможность предохранения на участках большей площади. Конструкция устройств такого типа предусматривает наличие одного или нескольких стальных тросов с цинковым покрытием, закрепленных на специальных мачтах. При правильном расположении опор разряды уходят в грунт за пределами защищаемых объектов.

Для предохранения от молний зданий с плоской кровлей и значительными габаритами используют специальную сетку. Она изготавливается из металлических прутков и укладывается поверх кровли или под утеплитель. Способ крепления сетки зависит от вида и огнестойкости кровли, а токоотводы устанавливают по периметру с шагом от 10 до 25 м. Надежность защиты от прямых ударов молнии не достигает нужного уровня, поэтому такая система менее популярна и может использоваться в сочетании с другими устройствами.

Важно! Размер ячеек сетки определяется категорией защищаемого объекта и может составлять от 5×5 м до 20×20 м.

Выбор молниеприемников осуществляется с учетом параметров строений. Согласно классификации различают три категории защитных устройств в зависимости от огнестойкости, пожарной и взрывной опасности, назначения и вместимости охраняемых объектов.

Среди типовых молниеотводов спросом пользуются следующие варианты:

  • Граненые конические. Они изготавливаются из прочной листовой стали и выполнены в виде металлической конструкции с защищенным от коррозии стержнем, принимающим разряды молнии. Молниеотводы производятся на основе стволов ВМО и ВМОН разного типа без осветительных приборов.
  • На базе опор освещения. Они могут быть со стационарной или мобильной короной. Молниеотводы ВГН и ВГМ представляют собой граненые конструкции из стали, которые комплектуются молнеприемниками и оборудованием для освещения. Для крепления прожекторов, камер наблюдений и пр. оборудования используют специальные кронштейны.

Важно! При расчете и выборе молниеотводов на основе высокомачтовых опор с мобильной короной (ВМО) и стационарной (ВМОН) учитывают условия эксплуатации и ветровую нагрузку на месте установки конструкций.

Преимущества молниеотводов

Популярность типовых молниеотводов, которые производятся на основе граненых опор, обусловлена высокой эффективностью защиты от молнии. К другим преимуществам таких конструкций относятся:

  • простота монтажа и обслуживания;
  • разнообразие моделей, позволяющее подобрать вариант с учетом условий эксплуатации и месторасположения;
  • возможность сочетания защитных функций с освещением дорожного полотна, тротуаров, парковок и других площадок.

Антикоррозийное покрытие продлевает срок службы сооружений, а прочность фиксации обеспечивается с помощью фланцев. Металлические конструкции способны выдерживать ветровую нагрузку, величина которой определяется месторасположением объектов.

Особенности использования

ГК «Амира» предлагает большой выбор молниеотводов собственного производства, которые выпускаются на основе выскокомачтовых опор. Установка таких конструкций позволяет:

  • организовать равномерное освещение на прилегающих территориях;
  • защитить от ударов молнии;
  • обеспечить предохранение от перенапряжения в сети питания.

В зависимости от исполнения молниеотводы предусматривают наличие или отсутствие приборов освещения. Они производятся из прочной стали и покрыты защитным цинковым слоем, который наносится в соответствии с требованиями ГОСТ 9.307-89.

Покрытие не является декоративным и выполняет исключительно утилитарные функции, предохраняя металл от повреждений и появления ржавчины. Гарантии на коррозионную стойкость цинкового слоя составляют не менее 25 лет.

Молниеотводы на основе опор освещения ВМО и ВМОН, выпускаемые ГК «Амира», использовались при обустройстве “Северного потока”. “Турецкого потока”, нефтеперекачивающих станций, в портах, а также на Тобольской промышленной площадке (высота ВГН здесь 83 и 90 метров).

В ГК “АМИРА” каждый заказанный молниеотвод рассчитывается под конкретный ветровой район, климатическую зону. Помимо отдельно стоящих молниеотводов, возможно изготовление совмещенных. Что позволяет уменьшить число устанавливаемых опор на объекте и упрощает обслуживание.

Расчет конструкции для каждого объекта осуществляется персонально, а выбор вариантов исполнения позволяет устанавливать молниеотводы на основе высокомачтовых опор с мобильной короной (ВГМ) и стационарной короной (ВГН) в I-VII ветровых районах.

Тепловые насосы для дома: особенности технологии, сфера применения и стоимость оборудования

Земля – источник неисчерпаемой тепловой энергии, применение которой в быту экологично и экономно.

Нашим подписчикам — скидки на товары для отопления и водоснабжения.

Источником тепла для насосов типа “рассол/вода” является постоянно положительная температура земли.

Источником тепла для насосов типа “вода / вода” являются грунтовые воды.

Тепловые насосы успешно используются в быту и промышленности в Европе и США уже более 25 лет. Их особенность состоит в преобразовании так называемого низкопотенциального тепла окружающей среды: земли, воды, воздуха. На российском рынке эта экологичная технология получила распространение сравнительно недавно.

Экспериментальные поселки, которые отапливались при помощи тепловых насосов, существовали еще в Советском Союзе. То, что было смелым экспериментом в двадцатом веке, в двадцать первом – вошло в практику.

Устройство и принцип работы бытового теплонасоса

Тепловой насос – это система, с помощью которой можно переносить тепло от менее нагретого тела к более нагретому, увеличивая температуру последнего. Тепловые насосы являются альтернативными источниками энергии, позволяющими получать дешевое тепло без вреда для окружающей среды.

Принцип работы бытового теплонасоса основан на том факте, что любое тело с температурой выше абсолютного нуля обладает запасом тепловой энергии. Этот запас прямо пропорционален массе и удельной теплоемкости тела. Если в этом контексте обратить внимание, например, на моря, океаны, подземные воды, обладающие огромной массой, можно прийти к выводу, что их грандиозные запасы тепловой энергии можно частично использовать для отопления домов без ущерба мировой экологической обстановке. «Взять» тепловую энергию какого-либо тела можно, если охладить его. Грубый расчет выделяемого при этом тепла возможен по формуле: Q = C*M*(T2 − T1), где Q − полученное тепло, C − теплоемкость, M – масса, T1 − T2 − температура, на которую было произведено охлаждение тела. Формула показывает, что при росте массы теплоносителя разница температур может быть небольшой. Например, охлаждая 1 кг теплоносителя от 1000 до 0 o С, можно получить столько же тепла, сколько даст охлаждение 1000 кг от 1 до 0 o С.

Типы тепловых насосов

По виду передачи энергии тепловые насосы бывают двух типов:

  • Компрессионные. Основные элементы установки – это компрессор, конденсатор, расширитель и испаритель. Используется цикл сжимания-расширения теплоносителя с выделением тепла. Этот тип тепловых насосов прост, высокоэффективен и наиболее популярен.
  • Абсорбционные. Это теплонасосы нового поколения, использующие в качестве рабочего тела пару абсорбент-хладон. Применение абсорбента повышает эффективность работы теплового насоса.

По источнику тепла выделяют тепловые насосы:

  • Геотермальные. Тепловая энергия берется из грунта или воды.
  • Воздушные. Тепло извлекается из атмосферы.
  • Использующие вторичное тепло. В качестве источника тепла используются воздух, вода, канализационные стоки.

По виду теплоносителя входного/выходного контура:

  • Тепловые насосы «воздух-воздух». Этот вид тепловых насосов забирает тепло у более холодного воздуха, еще больше понижая его температуру, и отдает его в отапливаемое помещение.
  • Тепловые насосы «вода-вода». Используется тепло грунтовых вод, которое передается воде для отопления и горячего водоснабжения.
  • Тепловые насосы «вода-воздух». Используются зонды или скважины для воды и воздушная система отопления.
  • Тепловые насосы «воздух-вода». Атмосферное тепло используется для водяного отопления.
  • Тепловые насосы «грунт-вода». Трубы прокладываются под землей, и по ним циркулирует вода, забирающая тепло из грунта.
  • Тепловые насосы «лед-вода». Для нагревания воды в системе отопления и горячего водоснабжения используется тепловая энергия, которая высвобождается при получении льда. Замораживание 100-200 л воды способно обеспечить обогрев среднего дома в течение часа.

Расчет эффективности тепловых насосов для отопления

Для того чтобы тепловой насос был эффективным, он должен давать тепловой энергии больше, чем потреблять электрической. Это соотношение называется коэффициентом преобразования. Коэффициент преобразования может меняться в зависимости от разницы температур входного и выходного контура. Чем холоднее снаружи, тем менее эффективна система. Для разных типов тепловых насосов коэффициент преобразования может варьироваться от 1 до 5. Для объективной оценки теплового насоса требуется дополнительный параметр годовой эффективности.

Эффективность конкретного теплового насоса будет зависеть от множества факторов, и ее расчет достаточно сложен. Дать обобщенную формулу, которая бы работала всегда, практически невозможно. Поэтому каждый конкретный случай требует обращения к экспертам, которые в зависимости от поставленной задачи и ее условий подберут необходимый тип теплового насоса и объем хладагента.

Сферы применения и степень распространения

Тепловые насосы востребованы прежде всего в случаях, когда другие способы организации системы отопления обходятся значительно дороже. Растущая распространенность тепловых насосов на производстве и в быту связана со следующими их преимуществами:

  • Экономичность. Для передачи в отопительную систему 1 кВт•ч тепловой энергии, установке требуется в среднем затратить всего 0,2-0,35 кВт•ч электроэнергии.
  • Простота эксплуатации.
  • Упрощение требований к системам вентиляции помещений, повышение уровня пожарной безопасности.
  • Возможность переключения с зимнего режима отопления на летний режим кондиционирования.
  • Компактность и бесшумность, что делает тепловой насос привлекательным для отопления частного дома.

По данным Европейской ассоциации тепловых насосов, до недавнего времени европейский рынок этого оборудования был в основном сосредоточен во Франции. В последние несколько лет рынки стали расширяться в Германии, Великобритании и Восточной Европе. По оценке Мирового энергетического комитета, уже в ближайшие пять лет доля отопления и горячего водоснабжения от тепловых насосов будет составлять в развитых странах не менее 75%.

Общий недостаток тепловых насосов – не очень высокая температура нагреваемой воды. Как правило, она составляет 50-60 o С.

Это интересно!

Впервые в Москве теплонасосная система горячего водоснабжения для многоэтажного дома была сдана в эксплуатацию в микрорайоне Никулино-2 в 2002 г. Проект был реализован при участии Министерства обороны РФ.

Стоимость оборудования

Традиционное решение для частных домов и коттеджей – газовое отопление. Однако вариант теплового насоса значительно выгоднее и удобнее. Чтобы установить газовый котел, требуются специальный дымоход, вентиляция, а также целый набор разрешительных документов. Применение тепловых насосов избавит вас от этих проблем и существенно сэкономит ваши средства. Чтобы провести газ в Подмосковье, потребуется около $20 000, и это в том случае, если ваш дом удален от газопровода менее, чем на 1 км, – иначе затраты вырастут в несколько раз! Помимо этого, придется учесть скорость работы отечественных газовщиков. Установка теплового насоса «под ключ» стоит от $15 000, а работы занимают всего 2-3 недели.

Из всего вышесказанного можно сделать однозначный вывод: использование тепловых насосов – это эффективное, простое в монтаже, экологичное и экономичное решение для организации отопления и горячего водоснабжения в частном доме.

Установка теплового насоса «под ключ»

Выбирая, где купить тепловой насос, обращайте внимание прежде всего на качество и надежность оборудования. На нашем рынке можно приобрести продукцию ведущих европейских производителей климатической техники, выпускающих тепловые насосы. Если вы поклонник немецкого качества, можно обратиться к официальному представителю известного бренда Vaillant – в интернет-магазин «Тепломатика.ру». Здесь работают квалифицированные инженеры, которые произведут для вас все необходимые расчеты и подберут эффективное оборудование. Все работы осуществляются «под ключ», сервис включает доставку и монтаж теплового насоса.

Тепловой насос: принцип работы – особенности и виды

Такой агрегат как тепловой насос принцип работы имеет сходный с бытовыми приборами – холодильником и кондиционером. Примерно 80% своей мощности он заимствует у окружающей среды. Насос перекачивает тепло с улицы в помещение. Его работа подобна принципу функционирования холодильника, отличается только направление переноса тепловой энергии.

Например, для охлаждения бутылки с водой люди ставят ее в холодильник, затем бытовой прибор частично «забирает» у этого предмета тепло и теперь, по закону сохранения энергии должен его отдать. Но куда? Все просто, для этого в холодильнике имеется радиатор, как правило, находящийся на его задней стенке. В свою очередь радиатор, нагреваясь, отдает тепло помещению, в котором стоит. Таким образом, холодильник отапливает комнату. До какой степени она прогревается, можно почувствовать в небольших магазинах жарким летом, когда включено несколько холодильных установок.

А теперь немного фантазии. Предположим, что в холодильник постоянно подкладываются теплые предметы, и он обогревает комнату или его расположили в оконном проеме, открыли дверцу морозильной камеры наружу, при этом радиатор находился в помещении. В процессе своей работы, бытовой прибор, охлаждая воздух на улице, одновременно будет переносить тепловую энергию, которая есть снаружи, в здание. Точно такой имеет тепловой насос принцип действия.

Откуда насос берет тепло?

Функционирует тепловой насос, благодаря эксплуатации природных низкопотенциальных источников тепловой энергии, среди которых:

  • окружающий воздух;
  • водоемы (реки, озера, моря);
  • грунт и грунтовые артезианские и термальные воды.

Система отопления с тепловым насосом

Теплоноситель, забирающий на себя тепло из окружающей среды, циркулирует по внешнему контуру. Он попадает в испаритель насоса и отдает хладагенту примерно 4 -7 °C, притом, что его температура кипения равна -10 °C. В результате хладагент закипает и дальше переходит в газообразное состояние. Уже охлажденный теплоноситель во внешнем контуре направляется на следующий виток для набора температуры.

Состоит функциональный контур теплового насоса из:

  • испарителя;
  • хладагента;
  • электрического компрессора;
  • конденсатора;
  • капилляра;
  • терморегулирующего управляющего устройства.

Процесс, как работает тепловой насос, выглядит примерно так:

  • хладагент после закипания, двигаясь по трубопроводу, попадает в компрессор, работающий при помощи электроэнергии. Это устройство сжимает хладагент, находящийся в газообразном состоянии, до высокого давления, что вызывает повышение его температуры;
  • горячий газ попадает в другой теплообменник (конденсатор), в котором тепло хладагента отдается теплоносителю, циркулирующему по внутреннему контуру отопительной системы, или воздуху в помещении;
  • остывая, хладагент переходит в жидкое состояние, после чего проходит сквозь капиллярный редукционный клапан, теряя давление, и затем снова оказывается в испарителе;
  • таким образом, цикл завершился, и процесс готов повториться.

Примерный расчет теплопроизводительности

На протяжении часа через насос по внешнему коллектору проходит 2,5-3 кубометра теплоносителя, который земля в состоянии нагреть на ∆t = 5-7 °C (прочитайте также: “Важно знать: как продумать расчет теплового насоса”). Чтобы рассчитать тепловую мощность данного контура, следует воспользоваться формулой:

Q = (T1 – T2) x V, где:
V – расход теплоносителя в час (м 3 /час);
T1 – T2 — разница температуры на входе и входе (°C) .

Виды тепловых насосов

В зависимости от вида потребляемого рассеянного тепла тепловые насосы бывают:

  • грунт-вода – для их работы в водяной отопительной системе используются закрытые грунтовые контуры или геотермальные зонды, находящиеся на глубине (подробнее: “Геотермальные тепловые насосы для отопления: принцип устройства системы”);
  • вода-вода – принцип работы теплового насоса для отопления дома в данном случае основывается на использовании открытых скважин для забора грунтовых вод и их сброса (прочитайте: “Как подобрать водяной насос для отопления”). При этом внешний контур не закольцован, а система отопления в доме – водяная;
  • вода-воздух – устанавливают внешние водяные контуры и задействуют отопительные конструкции воздушного вида;
  • воздух-воздух – для их функционирования используют рассеянное тепло наружных воздушных масс плюс воздушная система отопления дома.

Преимущества тепловых насосов

  1. Экономичность и эффективность. Принцип действия тепловых насосов, изображенных на фото, основан не на производстве тепловой энергии, а на переносе ее. Таким образом, КПД теплового насоса должен быть больше единицы. Но как такое возможно? В отношении работы тепловых насосов используется величина, которая называется коэффициентом преобразования тепла или сокращенно КПТ. Характеристики агрегатов данного типа сравнивают именно по этому параметру. Физический смысл величины заключается в определении соотношения между количеством полученного тепла и затраченной на его получение энергии. Например, если коэффициент КПТ равен 4,8, это означает, что электроэнергия в 1кВт, затраченная насосом, позволяет получить 4,8 кВт тепла, причем безвозмездно от природы.
  2. Универсальное повсеместное применение. В случае отсутствия доступных для потребителей линий электропередач работу компрессора насоса обеспечивают при помощи дизельного привода. Поскольку природное тепло есть повсюду, принцип работы этого устройства позволяет использовать его повсеместно.
  3. Экологичность. Принцип работы теплового насоса основан на малом потреблении электроэнергии и отсутствии продуктов горения. Используемый агрегатом хладагент не содержит хлоруглеродов и полностью озонобезопасен.
  4. Двунаправленный режим функционирования. В отопительный период тепловой насос способен обогревать здание, а в летнее время охлаждать его. Тепло, отобранное у помещения, можно применять для обеспечения дома горячим водоснабжением, а, если имеется бассейн, подогревать в нем воду.
  5. Безопасная эксплуатация. В работе тепловых насосов отсутствуют опасные процессы – нет открытого огня, и не выделяются вредные для здоровья человека вещества. Теплоноситель не имеет высокой температуры, что делает устройство безопасным и одновременно полезным в быту.
  6. Автоматическое управление процессом обогрева помещений.


Принцип работы теплового насоса, достаточно подробное видео:

Некоторые особенности эксплуатации насосов

Чтобы обеспечить эффективную работу теплового насоса, необходимо соблюдать ряд условий:

  • помещение должно быть качественно утепленным (теплопотери не могут превышать 100 Вт/ м²);
  • тепловой насос выгодно использовать для низкотемпературных отопительных систем. Данному критерию соответствует система теплого пола, поскольку ее температура 35-40°C. КПТ во многом зависит от соотношения между температурой входного контура и выходного.

Принцип работы тепловых насосов заключается в переносе тепла, что позволяет получать коэффициент преобразования энергии величиной от 3 до 5. Другими словами каждый 1 кВт использованной электроэнергии приносит в дом 3-5 кВт тепла.

Тепловой насос принцип работы

Принцип работы теплового насоса

Стоимость эксплуатации традиционных источников тепла – нагревателей, котлов, работающих на различных видах топлива и пр. – с каждым годом возрастает, привычный комфорт – горячая вода и отопление – становится все дороже.

Владельцы квартир и особенно частных домов озабочены тем, как уменьшить расходы, но пока это им мало удается.

А ведь альтернатива есть – тепловой насос.

Что такое тепловой насос

Тепловой насос представляет собой парокомпрессионную установку, которая переносит тепло от холодных, низкопотенциальных источников тепла к горячим, высокопотенциальным.

Тепло передается за счет конденсации и испарения хладагента, в качестве которого чаще всего используется фреон, циркулирующий по замкнутому контуру. Электроэнергия, от которой работает тепловой насос, тратится только на эту принудительную циркуляцию.

Принцип работы теплового насоса основан на так называемом цикле Карно, который прекрасно знаком вам по работе холодильных установок. На самом деле, бытовой холодильник, стоящий на вашей кухне, также является тепловым насосом. Когда вы помещаете в него продукты, пусть даже холодные, но температура которых все-таки выше, чем температура в камере холодильника, по закону сохранения энергии выделяемое ими тепло никуда не девается. Поскольку температура внутри повышаться не должна, тепло выводится наружу через решетку радиатора, нагревая воздух в кухне. Чем больше продуктов вы поместите одновременно в холодильник, тем больше будет теплоотдача.

Простейшим вариантом теплового насоса станет открытый холодильник, помещенный на улице, радиатор которого находится в комнате. Но пусть холодильник исполняет свои прямые обязанности, ведь уже существуют специальные устройства – тепловые насосы, имеющие кпд гораздо выше. Принцип их действия достаточно прост.

Как работает тепловой насос

Любой теплонасос состоит из испарителя, конденсатора, расширителя, понижающего давление, и компрессора, который давление повышает.

Все эти устройства соединены в один замкнутый контур трубопроводом. По трубам циркулирует хладагент, инертный газ с очень низкой температурой кипения, поэтому в одной части контура, холодной, он представляет собой жидкость, а во второй, теплой, он переходит в газообразное состояние.

Двигаясь дальше, газ перемещается в компрессор, где под действием высокого давления сжимается, а его температура при этом повышается. Став горячим, газ поступает в конденсатор, который также является теплообменником. В нем происходит передача тепла от горячего газа к теплоносителю обратного трубопровода, входящего в отопительную систему дома. Отдав тепло, газ охлаждается и снова переходит в жидкое состояние, в то время, как нагретый теплоноситель поступает в систему горячего водоснабжения и отопления. Проходя через редукционный клапан расширителя, сжиженный газ снова попадает в испаритель – цикл замыкается.

В холодное время года тепловые насосы работают на обогрев дома, а в жару – на его охлаждение. В этом случае принцип работы тот же, только летом тепло в теплоноситель поступает из внутренних помещений, а не снаружи.

Конструктивные особенности тепловых насосов

В настоящее время используются тепловые насосы, имеющие разные конструкции.

Так, насос с открытым циклом применяют, когда дом расположен рядом с водоемом. В этом случае теплоноситель, вода, поступает в открытый контур, проходит весь цикл и, охлаждаясь, вновь сливается в водоем.

Геотермальные насосы закрытого типа прокачивают теплоноситель – воздух или воду, по трубам, заложенным глубоко в землю и проложенным по дну водоема. Закрытый цикл в экологическом плане считается более безопасным. К закрытому типу относятся насосы с вертикальным и горизонтальным теплообменником, которые используются, когда поблизости нет водоемов. Вертикальные тепловые насосы применяются, когда площадь земельного участка, на котором расположен дом, невелика. Иногда вертикальные насосы устанавливают в пробуренных поблизости скважинах.

Разновидности тепловых насосов и систем

Грунтовые тепловые насосы

Количества тепловой энергии, получаемой от грунта, достаточно для разогрева хладогента до уровня, где тот меняет агрегатное состояние, превращаясь в пар. Удобно то, что на глубине уже в несколько метров сезонные температурные колебания не наблюдаются. Это позволяет пользоваться прибором круглый год, и в доме всегда будет горячая вода.

Есть два способ размещения трубопровода в грунте:

  1. Горизонтальный коллектор – это система горизонтально лежащего контура.
  2. Геотермальный зонд – приемники расположены вертикально и связаны между собой.

Геотермальные насосы с горизонтальным коллектором предполагают заглубление на полтора-два метра. Главное пройти отметку уровня промерзания грунта. Для каждого региона она своя. В среднем это 1,2 метра. Если требуется отопить здание, площадью до 100 кв. м., придется выкопать котлован или вырыть сеть траншей, площадью в 2-3 сотки. Это не обязательно делать под самим сооружением. Главное не садить на задействованном участке растения, имеющие корни, уходящие глубоко в землю.

Водяные тепловые насосы

Для использования такого теплового насоса принцип действия взят тот же. Но отличается тип источника.

В данном случае это грунтовые воды. Естественно, глубина их залегания должна быть доступна в регионе. Но если такая возможность есть, система отличается тепловой стабильностью, так как подземные воды имеют постоянную температуру круглый год. Это делает устройство пригодным для применения в течение всех четырех сезонов. Перед монтажом проводят геологическую разведку, чтобы убедиться, что вода течет на глубине 30-40 метров.

Однако требуется и химический анализ. Если в составе мало солей железа и ряда других примесей, можно ставить геотермальный зонд.

В противном случае это нецелесообразно ввиду наличия риска преждевременного выхода из строя и низкой производительности.

В данном случае применяют грунтовый тепловой насос или воздушный. Именно это требование является причиной того, что среди всей массы рабочих ныне установок тепловые насосы водяного типа используются реже – порядка 5% случаев.

Воздушные тепловые насосы

Главное преимущество этого способа организации отопления и подачи горячей воды – отсутствие необходимости вести полномасштабное строительство.

Не нужно бурить скважины для геотермальных зондов. Нет необходимости рыть траншеи, как в случае с грунтовым тепловым насосом. Все узлы размещаются на поверхности. В итоге сметная стоимость значительно ниже. Времени на установку и обустройство затрачивается меньше. Но при всем кажущемся комфорте это устройство далеко не идеально.

Работа будет эффективной при температуре воздуха не ниже – 15 °С.

Схематично теплонасос можно представить в виде системы, которая имеет три контура:

  • В первом контуре расположен тепловой носитель, который переносит энергию от источника низкопотенциального тепла.
  • В следующем циркулирует хладагент. Он может испаряться, забирая тепловую энергию из первого контура, или заново конденсироваться, передавая тепло третьему контуру.
  • В последнем контуре циркулирует теплоприемник (обычно вода), который переносит тепло по батареям для отапливания дома.

Основные виды

Тепловая энергия, которая расходуется на отопление загородного дома и для подачи горячего водоснабжения, это результат преобразования энергии из внешней среды при помощи термонасоса. Помпа концентрирует эту низкотемпературную энергию и переносит ее по отопительной системе.

Чаще всего бытовые насосы используют тепло солнечного освещения или тепло поверхности Земли, которое скапливается в верхних частях земной коры или подземных водах на протяжении года. То есть по конструкции все теплонасосы можно разделить на воздушные, водяные и грунтовые.

Грунтовые помпы

Насосы для охлаждения

Этот вид насосного оборудования получает тепло от грунта. Температура земли на глубине более 3 м почти не подвергается сезонным перепадам. По замкнутому контуру труб, устроенным в грунте, циркулирует этанол или антифриз. Трубопровод теплообменника можно прокладывать в грунте горизонтальным или вертикальным способом.

Трубы при горизонтальной системе нужно установить в землю ниже промерзания грунта (чаще всего это 1,6−2,1 м). Теплообменник этого типа занимает значительную площадь. Так, для отопления дома в 100 м² требуется примерно 10−20 м² земли.

На участке, который занят коллектором, можно высаживать только те растения, у которых корневая система не уходит в грунт очень глубоко, также запрещается сооружать какие-то капитальные постройки.

При устройстве вертикального теплообменника трубы устанавливают перпендикулярно уровню земли и погружают в грунт примерно на 150−220 м. Число монтируемых зондов будет зависеть от мощности обогревательной системы. То есть для отопления дома 100 м² потребуется 2 зонда длиной примерно 90 м, находящихся друг от друга с интервалом 4−6 м.

Разновидности тепловых насосов

Этот вид помп «забирает» энергию у подземных вод. Такой тепловой насос характеризуется высокой эффективностью и хорошей стабильностью. Это обусловлено отличной теплоотдачей внутри системы и постоянным термальным режимом подземных вод.

Воздушные агрегаты

Воздушные насосы

В плане простоты установки воздушный тепловой насос для отопления дома имеет значительное преимущество, в отличие от своих аналогов. Для использования воздуха в качестве источника теплой энергии не потребуется бурить скважины либо выполнять иные масштабные земельные работы. То есть воздушная помпа в установке обходится намного дешевле, чем другие два вида насосов.

Невзирая на это огромное преимущество у воздушного оборудования существует один серьезный недостаток. Эта помпа может эффективно работать только при температуре воздуха выше -17C. Снижение температуры ниже установленной границы, что зимой часто случается во многих регионах, приводит к значительному уменьшению коэффициента эффективности этого оборудования.

Откуда насос берет тепло?

Функционирует тепловой насос, благодаря эксплуатации природных низкопотенциальных источников тепловой энергии, среди которых:

  • окружающий воздух;
  • водоемы (реки, озера, моря);
  • грунт и грунтовые артезианские и термальные воды.

Теплоноситель, забирающий на себя тепло из окружающей среды, циркулирует по внешнему контуру. Он попадает в испаритель насоса и отдает хладагенту примерно 4 -7 °C, притом, что его температура кипения равна -10 °C. В результате хладагент закипает и дальше переходит в газообразное состояние. Уже охлажденный теплоноситель во внешнем контуре направляется на следующий виток для набора температуры.

Состоит функциональный контур теплового насоса из:

  • испарителя;
  • хладагента;
  • электрического компрессора;
  • конденсатора;
  • капилляра;
  • терморегулирующего управляющего устройства.

Процесс, как работает тепловой насос, выглядит примерно так:

  • хладагент после закипания, двигаясь по трубопроводу, попадает в компрессор, работающий при помощи электроэнергии. Это устройство сжимает хладагент, находящийся в газообразном состоянии, до высокого давления, что вызывает повышение его температуры;
  • горячий газ попадает в другой теплообменник (конденсатор), в котором тепло хладагента отдается теплоносителю, циркулирующему по внутреннему контуру отопительной системы, или воздуху в помещении;
  • остывая, хладагент переходит в жидкое состояние, после чего проходит сквозь капиллярный редукционный клапан, теряя давление, и затем снова оказывается в испарителе;
  • таким образом, цикл завершился, и процесс готов повториться.

Примерный расчет теплопроизводительности

На протяжении часа через насос по внешнему коллектору проходит 2,5-3 кубометра теплоносителя, который земля в состоянии нагреть на ∆t = 5-7 °C (прочитайте также: “Важно знать: как продумать расчет теплового насоса”). Чтобы рассчитать тепловую мощность данного контура, следует воспользоваться формулой:

Q = (T1 – T2) x V, где: V – расход теплоносителя в час (м3/час); T1 – T2 — разница температуры на входе и входе (°C) .

Виды тепловых насосов

В зависимости от вида потребляемого рассеянного тепла тепловые насосы бывают:

  • грунт-вода – для их работы в водяной отопительной системе используются закрытые грунтовые контуры или геотермальные зонды, находящиеся на глубине (подробнее: “Геотермальные тепловые насосы для отопления: принцип устройства системы”);
  • вода-вода – принцип работы теплового насоса для отопления дома в данном случае основывается на использовании открытых скважин для забора грунтовых вод и их сброса (прочитайте: “Как подобрать водяной насос для отопления”). При этом внешний контур не закольцован, а система отопления в доме – водяная;
  • вода-воздух – устанавливают внешние водяные контуры и задействуют отопительные конструкции воздушного вида;
  • воздух-воздух – для их функционирования используют рассеянное тепло наружных воздушных масс плюс воздушная система отопления дома.

Преимущества тепловых насосов

  1. Экономичность и эффективность. Принцип действия тепловых насосов, изображенных на фото, основан не на производстве тепловой энергии, а на переносе ее. Таким образом, КПД теплового насоса должен быть больше единицы. Но как такое возможно? В отношении работы тепловых насосов используется величина, которая называется коэффициентом преобразования тепла или сокращенно КПТ. Характеристики агрегатов данного типа сравнивают именно по этому параметру. Физический смысл величины заключается в определении соотношения между количеством полученного тепла и затраченной на его получение энергии. Например, если коэффициент КПТ равен 4,8, это означает, что электроэнергия в 1кВт, затраченная насосом, позволяет получить 4,8 кВт тепла, причем безвозмездно от природы.
  2. Универсальное повсеместное применение. В случае отсутствия доступных для потребителей линий электропередач работу компрессора насоса обеспечивают при помощи дизельного привода. Поскольку природное тепло есть повсюду, принцип работы этого устройства позволяет использовать его повсеместно.
  3. Экологичность. Принцип работы теплового насоса основан на малом потреблении электроэнергии и отсутствии продуктов горения. Используемый агрегатом хладагент не содержит хлоруглеродов и полностью озонобезопасен.
  4. Двунаправленный режим функционирования. В отопительный период тепловой насос способен обогревать здание, а в летнее время охлаждать его. Тепло, отобранное у помещения, можно применять для обеспечения дома горячим водоснабжением, а, если имеется бассейн, подогревать в нем воду.
  5. Безопасная эксплуатация. В работе тепловых насосов отсутствуют опасные процессы – нет открытого огня, и не выделяются вредные для здоровья человека вещества. Теплоноситель не имеет высокой температуры, что делает устройство безопасным и одновременно полезным в быту.
  6. Автоматическое управление процессом обогрева помещений.

Принцип работы теплового насоса, достаточно подробное видео:

Некоторые особенности эксплуатации насосов

Чтобы обеспечить эффективную работу теплового насоса, необходимо соблюдать ряд условий:

  • помещение должно быть качественно утепленным (теплопотери не могут превышать 100 Вт/ м²);
  • тепловой насос выгодно использовать для низкотемпературных отопительных систем. Данному критерию соответствует система теплого пола, поскольку ее температура 35-40°C. КПТ во многом зависит от соотношения между температурой входного контура и выходного.

Принцип работы тепловых насосов заключается в переносе тепла, что позволяет получать коэффициент преобразования энергии величиной от 3 до 5. Другими словами каждый 1 кВт использованной электроэнергии приносит в дом 3-5 кВт тепла.

Принцип действия

  1. Хладагент поступает в испарительный контур и изменяет своё агрегатное состояние. При переходе из жидкого состояния в газообразное и из среды поглощается тепло.
  2. С помощью компрессора газ под значительным давлением перемещается вместо, где необходимо отдать тепло. При этом температура самого хладагента многократно увеличивается.
  3. Сжатый газ в теплообменнике конденсируется, отдавая при этом накопленную энергию.
  4. Высвободившееся тепло передаётся жидкости, которая циркулирует в системе отопления дома.

Установка, способная поддерживать процесс передачи тепла таким образом, называется тепловым насосом. Энергия способна без ограничения постоянно перемещаться от устройства, где осуществляется её отбор, к радиаторам отопления, поэтому этот процесс напоминает способ перекачки каких-либо жидких или газообразных веществ. Даже несмотря на то, что тепловой насос, применяемый для отопления дома, потребляет значительное количество электроэнергии, в итоге такой способ обогрева обойдётся значительно дешевле использования традиционных печей и котлов.

Основные элементы конструкции

Тепловые насосы, используемые для отопления, состоят из следующих элементов:

  • Компрессора. Это устройство служит для значительного повышения температуры хладагента. В современных теплообменных приборах часто используются спиральные модели нагнетателей.
  • Испарителя. Этот элемент представляет собой ёмкость, в которой жидкое рабочее вещество переходит в газообразное, при этом, температура хладагента существенно увеличивается за счёт поглощения тепловой энергии.
  • Конденсатора. Это устройство предназначено для передачи тепла от разогретого хладагента отопительному контуру.
  • Дроссельный клапан. Механизм, который способен перекрывать доступ хладагента из одной части установки к другой, тем самым, разделяя систему на участки с низким и высоким давлением.

Тепловые насосы комплектуются различными дополнительными устройствами:

  • коммуникационное устройство – для управления системой через персональный компьютер или мобильный телефон;
  • блок охлаждения – для локальной или центральной системы охлаждения;
  • дополнительный насосный блок – для отопления полов;
  • циркуляционный насос – для циркуляции горячей воды.
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: