Как Проверить Диодный Мост Зарядного Устройства ~ NET.Гаджет

Как проверить диодный мост мультиметром?

С развитием электроники в современном мире, в различной аппаратуре применяется такой узел как диодный мост. В случае не нормальных режимов работы и коротких замыканий, он первый кто принимает удар на себя. Научиться проверять диодный мост самостоятельно – это полезный навык, который пригодиться всем тем, кто хоть как-то занимается самостоятельным ремонтом поломанного оборудования.

Давайте вспомним немного теории. Работа диодного моста, основана на свойстве полупроводникового диода пропускать ток только в одном направлении. Схема моста состоит из четырех диодов и может выполняться как в открытом виде, так и в виде монолитного корпуса. Подробней обо всем этом вы можете прочесть в материале про диодный мост.

Неисправности диодного моста:

  1. Пробой диода – это когда диод становиться обычным проводником, а мультиметр показывает сопротивление этого проводника, обычно происходит в следствии высокого обратного напряжения или тока, диод не может выдержать величины и пробивается, ток проводиться в обоих направлениях.
  2. Обрыв диода – название говорит само за себя, это когда диод вообще не проводит электрический ток, в любом включении он будет иметь очень высокое сопротивление, а мультиметр будет показывать единицу, свидетельствуя о обрыве. Это менее распространенная неисправность.

Проверка обычного диодного моста

Как было написано выше, диодный мост состоит из четырех отдельных полупроводниковых диодов. Чтобы проверить его исправность, нам нужно прозвонить каждый из них в двух направлениях. Включаем мультиметр в режим прозвонки (он отмечен значком диода или звука) и выбираем первый диод, с которого мы начнем проверку.

Находим у него анод (плюсовой вывод) и катод (минусовой вывод). Обычно они обозначены на корпусе диода с помощью цветового обозначения, либо соответствующими иконками. Для начала проверяем диод в прямом включении, для этого красный щуп (плюсовой) подключаем к аноду, а черный (минусовой) к катоду.

На дисплее мультиметра должны появиться цифры – значение падения напряжения, указывается оно в милливольтах. Это то минимальное напряжение, которое нужно для открытия диода.

Теперь давайте проверим его в обратном включении, для этого меняем щупы местами – красный к катоду, а черный к аноду. На дисплее должна показываться единица, что указывает нам на высокое сопротивление P-N перехода – этот диод исправен.

Если в обратном включении показываются малое сопротивление, а прибор пищит (при наличии звуковой индикации) – этот диод пробит и его нужно заменить. Таким образом прозванием оставшиеся три штуки и если найден неисправный, просто выпаиваем его и заменяем на новый.

Проверка диодной сборки

Вся хитрость диодной сборки в том, что мы не видим отдельно диоды. Но сложного тут ничего нет, на помощь нам приходит схема диодного моста. Для наглядности размещаем ее недалеко от себя и начинаем проверку. Проверять мы будем как в первом пункте статьи – по одному диоду. В диодной сборке каждый вывод подписан, так что найти нужный нам диод не составит труда.

Выводы диодов в монолитном корпусе:

  • Диод 1: минус сборки – анод, один из переменных выводов – катод;
  • Диод 2: минус сборки – анод, один из переменных выводов – катод;
  • Диод 3: переменный вывод – анод, плюс сборки – катод;
  • Диод 4: переменный вывод – анод, плюс сборки – катод.

Зная обозначение выводов, проверяем каждый диод в двух направлениях. Если какой-то из них имеет пробой или обрыв, то приодеться заменить всю диодную сборку. Изображения для наглядности:

Проверка диодов 1 и 2 при прямом включении:

Проверка диодов 1 и 2 при обратном включении:

Проверка диодов 3 и 4 при прямом включении:

Проверка диодов 3 и 4 при обратном включении:

Если все еще что-то не понятно, возможно вам стоит посмотреть видео по проверке диодного моста.

Вывод

В этом материале был разобран полезный материал по прозвонке диодного моста на его исправность. Разобрали случай с отдельными диодами и диодной сборкой. Если у вас остались какие-нибудь вопросы, то задавайте их в комментарии.

Как проверить диодный мост

Диодный мост или, как его ещё называют, выпрямитель нужен для преобразования переменного тока в постоянный. Его используют везде, где нужно получить питание постоянным напряжением независимо от мощности прибора, потребляемого тока или величины напряжения.

Устройство

Для выпрямления однофазного напряжения используют схему Гретца из четырёх диодов. Если в схеме стоит трансформатор с отводом от средней точки используют схему из двух диодов.

Мостом называется именно включение четырёх диодов.

Диодный мост может быть выполнен в одном корпусе, а может быть из дискретных диодов, то есть отдельных. Входом диодного моста называют точки подключения переменного напряжения, а выходом – точки с которых снимают постоянное.

Переменное напряжение подают в точки, в которых соединены анод с катодом диодов. На выходе получают плюс и минус, при этом с точки соединения катодов снимают положительный полюс, т.е. плюс питания, а точка соединения анодов является минусом.

Читайте также:
Какие проблемы могут возникнуть у гладкой плитки

На приведенном рисунке изображена схема диодного моста, где мест подключения переменного напряжения обозначены “AC

“, а выход постоянного “+” и “-“.

Некоторые новички наивно предполагают, исходя из принципа обратимости электрических машин, что подав постоянку на мост на оставшихся контактах они получат переменку. Это не так, это не электрическая машина и здесь нужен преобразователь.

На современных диодных мостах контакты помечены также: вход переменки “AC” или “

“, а выход по стоянки “+” и “-“. Совместим схему с изображением реального моста, чтобы разобраться, как это выглядит на практике.

Где устанавливают

Диодный мост обычно установлен на входе цепи питания, если выпрямляется сетевое напряжение 220В, такое решение применяется в импульсных блоках питания, в том числе компьютерного блока питания, устройство которого было рассмотрено в одной, из ранее выложенных на сайте (смотрите – Как устроен компьютерный блок питания). Либо во вторичной обмотке трансформатора, такое включение применяется в обычных блоках питания, например маломощной магнитолы для дома или старого телевизора.

В современных блоках питания чаще используются импульсные схемы, в них диодный мост выпрямляет именно сетевое напряжение, а трансформатором управляют полупроводниковые ключи (транзисторы).

Если диодный мост стоит на входе по линии 220В, то на его выходе пульсирующее или сглаженное (если есть фильтрующий конденсатор) постоянное по знаку напряжение амплитудой в 310В. В любом случае выпрямленное напряжение увеличивается, относительно переменного.

Тоже касается и остаточного заряда фильтрующих электролитических конденсаторов, они могут биться током, даже когда питание на плату блока питания не подаётся. Их нужно предварительно разряжать лампой накаливания или резистором.

Не стоит разряжать емкость закорачиванием железным инструментом: вас может ударить током, вы можете повредить конденсаторы или дорожки платы.

Приступим к проверке диодного моста

Я буду рассуждать на примере типовой ситуации. Есть нерабочее устройство и его нужно отремонтировать.

Вы решили отремонтировать устройство, при разборке увидели на плате перегоревший предохранитель, защитный резистор или дорожку на печатной плате.

После замены сгоревшего элемента и восстановления дорожки не спешите включать. Начинающие электронщики любят делать “жучки” вместо предохранителя, тогда, тем более, нельзя включать плату.

Если предохранитель вышел из строя не случайно, а из-за проблем на плате блока питания вы получите повторное перегорание предохранителя. А если вместо него поставили жучек, то это включение сопроводить зрелищный фейерверк, возможное повреждение провода или розетки, выбитые пробки и автоматы.

Если пробит диодный мост, то после предохранителя на плате будет КЗ. Чтобы проверить диодный мост на пробой без мультиметра пользуйтесь проверенным способом: подключайте сомнительные блоки пиатния, через лампу накаливания на 40-100 Вт 220В. Она выполнит роль ограничителя тока и плата не повредится, и предохранитель не перегорит. Лампу подключают в разрыв одного из питающих кабелей 220В.

Если диодный мост пробит – лампа засветится в полный накал.

Это достаточно приблизительный способ диагностики диодного моста без мультиметра. Лампа может засветиться и при исправном мосте, если КЗ находится в схеме после него. Проверить диодный мост на обрыв без мультиметра можно и с помощью индикаторной отвёртки, на его выходе, как уже было сказано, должно быть высокое напряжение, если он установлен на линии 220В, неоновый индикатор в отвёртке должен засветиться.

Проверка диодного моста мультиметром

Любую деталь в электрической схеме нужно выпаивать перед её проверкой и прозвонкой. Можно, конечно, проверить и на плате, но есть вероятность получить ложные результаты измерений.

Также если вы будете прозванивать мост со стороны дорожек и контактных площадок на плате, есть вероятность отсутствия электрического контакта при визуально нормальной пайке. В тоже время, если диодный мост собран на плате из отдельных диодов, его зачастую удобно проверять, не выпаивая из плат, с её лицевой стороны. В таком случае вы получаете удобный доступ к металлическим ножкам диода.

Вам понадобится любой цифровой мультиметр, например самый дешёвый и распространенный типа dt-830. Включите режим прозвонки диодов, вы его можете найти по пиктограмме с условным его обозначением.

Часто этот режим совмещён с режимом звуковой прозвонки. Любая прозвонка и большинство омметров состоит из пары щупов, один из которых является плюсом, а второй – минусом. На мультиметра чаще всего красный щуп принимается за плюс, а чёрный за минус.

Как известно – диод проводит ток в одну сторону. При этом протекание тока возможно только при подключении положительного щупа (плюса) к аноду, а отрицательного к катоду. Тогда при проверке мультиметром в этом режиме силового кремниевого диода на дисплее отображаются цифры в диапазоне 500. 700.

Читайте также:
Как рассчитать площадь чугунного радиатора для покраски

Это количество милливольт, которое падает на pn-переходе. Если вы увидели эти значения – диод уже наполовину исправен. Если цифры большие или у левой стороны экрана появилась единица и больше ничего – диод в обрыве. Если сработала звуковая прозвонка или на экране около 0 – диод пробит.

Теперь нужно определить, не проходит ли ток в обратном направлении. Для этого меняем щупы местами, на экране либо должно быть значение много больше 1000, порядка 1500, либо единица у левой стороны экрана – так обозначается большое значение, выходящее за пределы измерений. Если значения маленькие – диод неисправен, он пробит.

Если оба замера совпали с описанными – с диодом все в порядке.

Таким образом проверяют диодный мост из отдельных диодов.

У диодов Шоттки падение напряжения от 0.3В, то есть при проверке на экране мультиметра высветится цифра порядка 300-500.

Если поменять щупы местами – красный на катод, а черный на анод, на экране будет либо единица, либо значение более 1000 (порядка 1500). Такие измерения говорят о том, что диод исправен, если в одном из направлений измерения отличаются, значит, диод неисправен. Например, сработала прозвонка – диод пробит, в обоих направлениях высокие значения (как при обратном включении) – диод оборван.

Проверка диодного моста в корпусе мультиметром

Я начал статью с описания точек, куда подключается переменка и откуда снимается постоянка неспроста. Это поможет при его проверке, давайте разберемся!

Сразу оговорюсь, что черный щуп вставлен в разъём “COM” на мультиметре.

Ставим черный щуп мультиметра на контакт, помеченный как “+”, а красным попеременно касаемся контактов “

” к которым подключают переменное напряжение по очереди. В обоих случаях на экране вы должны увидеть падение напряжения на прямовключенном pn-переходе, т.е. цифры около 600, если диод исправен. Поменяв щупы местами, если выпрямитель исправен, вы увидите большие значения или единицу.

На некоторых мультиметрах вместо единицы используют символы 0L.

Проверяем вторую пару диодов. Для этого красный щуп ставим на вывод “-” диодного моста, а красным по очереди касаемся выводов “

“, вы должны увидеть на экране мультиметра значения прямого падения – около 600 при касании любого из контактов со знаком “

” (AC). Меняем щупы местами – на экране больше значения или бесконечность. Если что-то отличается, то диодный мост нужно заменить.

Быстрая проверка диодного моста

Иногда возникает необходимость экспресс проверки диодного моста, это можно сделать тремя касаниями щупов мультиметра к мосту. Можно проводить её не выпаивая мост из платы.

Первое положение щупов: ставим оба щупа между выводами для подключения переменного напряжения (на вход) “

“. Если диодный мост пробит – сработает прозвонка, а если её нет, то на экране мультиметра значения устремятся к нулю.

Второе положение щупов: красный щуп ставим на вывод со знаком “-“, а черный на вывод со знаком “+”, если диоды исправны – на экране мультиметра будут цифры в двое больше прямого падения на диоде, то есть 1200-1400 мВ. Если на экране около 600 – значит один диод пробит, и вы видите падение напряжения на одном оставшемся.

На рисунке ниже вы видите, как течет ток при такой проверке подумайте, почему получаются такие результаты.

Однако если один из диодов в обрыве ток потечет по уцелевшей ветви и на экране будут условно-исправные значения.

Третье положение щупов – красный щуп на вывод со знаком “-“, а черный на вывод со знаком “+”, тогда на экране мультиметра будут такие же результаты как при проверке диода подключенного в обратном направлении (бесконечность). Если сработала прозвонка или на экране маленькие значения (от нуля до сотен) – значит, мост пробит.

Такая проверка эффективна, но не даст такой достоверности как описанная в предыдущем пункте статьи. Если устройство все равно не работает и на выходе диодного моста отсутствует напряжение, то выпаяйте мост и повторно проверьте его.

Проверка другими средствами

Если у вас нет мультиметра, но у вас есть советский тестер или, как его еще называют “цешка” или какой-нибудь Омметр с пределом измерения до десятка кОм можно использовать и эти стрелочные приборы.

Логика проверки такая же самая, только в прямом включении стрелка будет указывать низкие сопротивления, а в обратном включении диода – высокое.

Если у вас и этого нет – вам поможет любая батарейка или несколько батареек с выходным напряжением больше пары вольт и лампочка накаливания (можно и светодиодом и кроной, батарейкой на 9В). Взгляните на картинку, и вам все станет ясно.

Заключение

Проверка диодного моста – базовый навык для тех, кто занимается ремонтом радиоэлектронной аппаратуры и электроприборов и для тех, кто хочет этому научиться. Для этого нужен минимальный набор инструментов, но хорошие понимание не только способа проверки, а и самой логики работы моста.

Читайте также:
Как построить зимнюю горку на участке – подробное руководство

Использование мультиметра, цешки или прозвонки не меняет конечного результата при правильном проведении измерений. Однако на моей практике случалось так, что прибор показывал исправность диодного моста, а в реальности он не работал.

Возможно он “пробивался” под большим напряжением, чем на клеммах прибора, которым я проводил проверку. Поэтому самым точным способом “посмотреть” процессы, происходящие в схеме – это осциллограф.

В автоэлектрике, например по одной только осциллограмме напряжения в линии можно определить исправность диодного моста генератора, причем специалист может даже определить, что конкретно произошло – пробой или обрыв.

Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!

Записывайтесь в онлайн-университет от GeekBrains:

Изучить C, механизмы отладки и программирования микроконтроллеров;

Получить опыт работы с реальными проектами, в команде и самостоятельно;

Получить удостоверение и сертификат, подтверждающие полученные знания.

Starter box для первых экспериментов в подарок!

После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.

Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.

Зарядное устройство для автомобиля: конструктивные особенности и проверка

С приходом морозов автовладельцы сталкиваются с затрудненным запуском автомобиля. Одна из вероятных причин — недостаточное питание стартера. Тестирование зарядного устройства (ЗУ) — наиболее простой шаг к решению проблемы холодного запуска. Процедура доступна всем, и для нее не требуется особых навыков. Нужно лишь знать, как проверить зарядное устройство для автомобильного аккумулятора тестером.

Виды и особенности ЗУ

Виды этих приборов классифицируются по следующим критериям:

  • понижение напряжения (трансформаторное, импульсное);
  • назначение (зарядное, пуско-зарядное);
  • управление (ручное, автоматическое).

Импульсное ЗУ

Основополагающий фактор — элемент, понижающий напряжение. Именно этим различаются трансформаторные и импульсные устройства. Вторые приборы дороже, компактнее, надежнее, имеют более сложную конструкцию. Но протестировать их самостоятельно вполне реально. Почти все импульсные аппараты имеют автоматическое управление и могут быть зарядными либо пуско-зарядными.

Трансформаторное ЗУ

Принцип действия трансформатора знаком из школьного курса физики. Этот класс приборов популярен благодаря доступности и ремонтопригодности. Благодаря простоте каждого блока он имеет несложную конструкцию. Трансформаторные зарядки бывают пуско-зарядными, с ручным или автоматическим управлением.

  • компоненты электропроводки,
  • предохранитель,
  • выключатель,
  • силовой понижающий трансформатор,
  • выпрямительный диодный мост,
  • амперметр.

Зачастую пользователи сами тестируют и выявляют дефекты трансформаторного устройства. Для этого следует убедиться в исправности каждого элемента. Сила тока и напряжение — показатели, по которым определяют целостность аппарата. Уточнив, как проверить, сколько амперов выдает зарядное устройство, выясняют его дефектность.

Тест напряжения и силы тока

Большинство автомобильных АКБ работают с напряжением 12 В. Но при полной разрядке на них подается большее напряжение, иначе зарядка не пойдет. Сила тока, поступающего на клеммы, не должна превышать 10 % емкости аккумулятора. Нормально функционирующее ЗУ выдает напряжение от 13,2 до 14,4 В со стабильной силой тока.

Измерение напряжения

Чтобы замерить напряжение на выходе ЗУ, необходимо подключить его к клеммам аккумулятора и включить. Затем следует параллельно подсоединить щупы мультиметра к клеммам, переключив тестер в нужный режим. Показания должны быть стабильны и находиться в пределах 13,2—14,4 В. В противном случае делают вывод: ЗУ неисправно.

Измерение силы тока

Выяснив, как проверить мультиметром (тестером), сколько амперов выдает тестируемое зарядное устройство, приступают к этой процедуре. Сравнивая показания тестера с цифрами, которые показывает ЗУ, выясняют корректность амперметра, встроенного в зарядник.

Чтобы измерить количество силы тока, которую выдает устройство, тестер включают в электрическую цепь последовательно. То есть один контакт ЗУ подключается к клемме АКБ, а второй — к одному из щупов мультиметра. Оставшийся щуп соединяется со второй клеммой батареи.

При полном разряде показания на дисплее превысят 10 % емкости, но будут постепенно снижаться. Позже сила тока стабилизируется. Иначе вывод: ЗУ неисправно.

Выявление неисправных модулей ЗУ

Убедившись, что прибор испорчен, следует приобретать новый либо ремонтировать старый. Вполне возможно, что сгорел предохранитель или отпаялся контакт. Такие изъяны легко устранимы, необходимо иметь отвертку, тестер, паяльник.

Необходимо придерживаться следующих рекомендаций:

  1. Перед разборкой аппарата необходимо выключить его из сети. После разборки — провести визуальный осмотр. Оторвавшийся провод или почерневший узел хорошо заметен.
  2. Кабель проверяют методом прозвона. Для этого переключают мультиметр в режим сопротивления и подсоединяют щуп к одному из контактов на вилке, второй щуп подсоединяют к концу провода питания внутри корпуса. Один из двух проводов должен быть нужным. Если кабель цел, то тестер «зазвенит», иначе — покажет сопротивление, стремящееся к бесконечности. Это означает порыв провода. Также проверяют второй провод кабеля.
  3. Тестирование прозрачного предохранителя обычно производится посредством визуального осмотра. При неисправности предохранителя следует заменить его таким же. Аналогичным образом испытывается кнопка-выключатель.
  4. Трансформатор проверяют при включенном в сеть ЗУ. Переключив тестер на режим измерения напряжения, его щупы подсоединяют к выходам трансформатора. Показания должны быть стабильны и находиться в рамках 13,2—14,4 В. Иначе делают вывод: узел неисправен.
  5. Первый шаг тестирования выпрямляющего блока (диодного моста) — это измерение напряжения на выходе из него. Для этого тестер переключают в соответствующий режим. Отсутствие показаний либо их некорректность говорит о том, что диодный мост неисправен. Когда узел монолитный, следует заменить его целиком.
Читайте также:
Модульные картины на кухню: стильные варианты

Если выпрямитель состоит из отдельных диодов в количестве 4 штук, проверяют каждый. Диод пропускает напряжение в одну сторону. Для его прозвона мультиметр переключают в режим сопротивления. Затем подключают щупы к контактам диода. Потом подсоединяют их наоборот. В одном случае тестер показывает отсутствие сопротивления, во втором — бесконечное сопротивление. Таким методом проверяют каждый диод.

Убедившись в работоспособности зарядного устройства, приобретают новый аккумулятор. Впоследствии не стоит пренебрегать его периодическим обслуживанием.

Для получения наглядного примера посмотрите видео:

Как Проверить Диодный Мост Зарядного Устройства ~ NET.Гаджет

Во многих приборах которые работают от сетевого напряжения, присутствует диодный мост.
Почти вся электроника начиная с светодиодной лампочки и заканчивая телевизором и компьютером – все устройства имеют диодный мост в том или ином виде.

Диодный мост, или по другому выпрямитель, необходим для преобразования переменного тока сетевого напряжения в постоянный ток, которым питается вся электроника и преобразователи напряжения различных устройств различной мощности и величины напряжения.
Такие электронные элементы как диодные мосты, очень часто выходят из строя при какой то поломке в схеме, за собой выводя из строя и предохранитель если он есть.

Но как проверить диодный мост чтоб понять следует ли его заменить? Есть несколько способов, давайте рассмотрим некоторые.

Диодные мосты, в схеме, зачастую бывают в двух исполнениях, это может быть диодная сборка в корпусе, а может и состоять из отдельных диодов смонтированных на плате устройства и соединенных между собой медными дорожками.

Диодные мосты, а вернее их сборки могут быть однофазными и трехфазными, а также полупериодными, когда например трансформатор используется с отводом от средней точки.
Но мостом можно назвать именно включение четырех диодов которые соединяются между собой параллельно-последовательным способом.
Переменка от сети подается на два места соединения катода с анодом, ну а постоянный ток снимается с мест соединения одинаковых полюсов (два катода – плюс, а два анода – минус).

Во всех блоках питания, как трансформаторных так и особенно – импульсных стоят диодные мосты, которые преобразуют переменное напряжение в постоянное.
Разница лишь в том что у импульсных блоках питания, диодная сборка стоит на входе и преобразует сразу сетевое напряжение, а у трансформаторных – после трансформатора. В обоих случаях, после диодного моста стоит конденсатор или несколько конденсаторов, что в общей системе после выпрямления поднимает напряжение на несколько вольт в трансформаторном исполнение, и несколько десятков вольт при выпрямление сетевого напряжения 220 вольт, в этом случае на конденсаторе может быть больше 300 вольт.

Как правило если устройство не работает, то смотрят сначала в блок питания и если он не выдает напряжения на своих выходах то смотрят на предохранитель.
Если предохранитель сгорел то не стоит спешить его заменять и сразу же включать устройство, просто так же он не сгорел.
Скорее всего на плате КЗ и здесь следует заметить что речь идет о импульсных блоках питания, потому как с трансформаторными БП такое редко бывает чтоб предохранитель сгорал.
При сгоревшем предохранителе, следует проверить всю первичную цепь радио элементов на пробой, но мы здесь поговорим о том как проверить диодный мост или диоды которые его представляют, потому как это самая вероятная причина поломки но следует заметить что не всегда единственная.

Так же импульсные блоки питания следует проверять и ремонтировать подключая вместо предохранителя лампочку накаливания (где то на 40 – 60 ват). Но у меня, например, есть вот такое, простое устройство выполненное в корпусе маленького пластикового щитка с автоматами разных номиналов которые выполняют роль предохранителей, и УЗО – которое защищает от поражения фазой сетевого напряжения, человека во время ремонта.

В устройстве установлено коммутирующее гнездо для подключения внешней лампочки разных мощностей. При ремонтах различных блоков питания и устройств, на практике нужно разной мощности лампочки накаливания.

Читайте также:
Как снять заглушку с канализации: убрать канализационную заглушку самостоятельно

Суть лампочки состоит в том что если на плате, где то на входе, есть замыкание то через плату потечет высокий ток и лампочка ярко засветится сохранив при этом не сгоревшие еще элементы.
Но если блок питания исправен то лампочка при включение может слегка вспыхнуть, продемонстрировав заряд конденсатора что стоит после диодного моста, и лампочка должна погаснуть.

Но следует помнить что при нагрузке блока питания на мощность выше мощности лампочки, блок питания будет ограничен мощностью лампочки, а сама лампочка будет ярко светится, поэтому для диагностики необходимо иметь несколько лампочек разного номинала, на 25, 60, 100, 150 ватт

Теперь вернемся к наиболее частой, возможно косвенной причине поломок большинства устройств с импульсными блоками питания – к диодному мосту.
Как же проверить исправен ли он и не подлежит ли замене на новый?

Как проверить диодный мост

Радиоэлементы можно проверять прямо на плате не выпаивая, с диодным мостом можно так же, пусть этот метод будет не точным но быстрым.

Такой экспресс метод проверки дает возможность узнать что диодный мост неисправен если он точно не исправен, но если диоды подгорели или не полностью пробиты то лучше все таки выпаять и проверить элемент отдельно от платы.
Немного проще будет проверить диодный мост который состоит из отдельных диодов на плате.

Для проверки будем использовать мультиметр, причем практически любой дешевый прибор имеет функцию прозвонки диодов с звуковой индикацией пробоя.

В данном режиме тестер показывает значение падения напряжения (в милливольтах).

Прямое подключение – красный щуп(+) подключаем к аноду диода, а черный(-) к катоду (там где полоска на диоде). При таком подключение у исправного диода падение напряжения должно показать 500 – 800 милливольт.

Если у вашего тестера нет режима проверки диодов, то подойдет и режим измерения сопротивления, по аналогичному методу.

Обратное подключение – (меняем щупы местами) теперь красный на катод, а черный на анод.
У исправного диода значение сопротивления должно быть бесконечным, то есть должно показать или “1” или цифры больше 1500 (что бывает редко).

У “пробитого” диода сопротивление будет нулевым или около нуля и скорее всего сработает звуковая индикация пробоя.

Так можно проверить каждый диод диодного моста по отдельности, но что делать если диодный мост представляет из себя радио элемент с четырьмя выводами?

Диодный мост такого типоисполнения можно проверить быстро ( и не выпаивая)
но проверка будет не точной. Суть такова:
Прикладываем щупы к выводам входа (АС) и если прозвонка мультиметра сработала то мост пробит
Прикладываем щупы к выводам +/- (поочередно) и если мультиметр “запищал” и показал нули то мост пробит, а если показал значения около 1000 в одно направление и “1” в другое то мост исправен.

Точный (полный) метод проверки диодного моста который выпаян выглядит так:

1. красный щуп на “-“, а черным касаемся выводов переменки АС (входа), на обоих выводах мультиметр должен показать число примерно 500.

2. черный щуп на “-“, а красным касаемся выводов переменки АС (входа), на обоих выводах должно показать “1” то есть бесконечное сопротивление.

3. черный щуп на “+”, а красным касаемся выводов переменки АС – мультиметр покажет число около 500.

4. красный щуп на “+”, а черный на выводы переменки (Ас) – мультиметр покажет “1” или запредельное число.

Кроме простого и более сложного метода проверки диодного моста мультиметром, его еще можно точно так же проверить любым тестером, омметром и даже лампочкой (светодиодом) с батарейкой (контролькой).
Кроме того можно проверить его работоспособность подав постоянное напряжение от блока питания на вход диодного моста и измерить напряжение на выходе, затем изменить полярность на входе. У исправного моста напряжение такое же как на входе будет и на выходе при любой вариации полярности на входе.

Проверка диодного моста, в том числе диодного моста генератора автомобиля вещь не сложная и довольно частая для тех кто занимается ремонтом. Минимум инструментов, но главное понимание того как работает диод и его мостовая сборка.

Если все таки возникают сложности с диагностикой диодного моста то всегда можно поставить другой заведомо исправный и посмотреть как работает схема с ним.

Теперь зная элементарные и эффективные методы проверки вы сможете в домашних условиях определить причину поломки бытового прибора или различной электроники, а возможно и самостоятельно отремонтировать свое устройство.

Группы допуска по электробезопасности: какие бывают и как получить

Для чего нужны группы допуска по электробезопасности?

Для определения квалификации любого технического специалиста применяются различные аттестации с внесением записей в трудовую книжку и оформлением приказов по предприятию. У квалифицированных рабочих есть разряды, у инженеров имеются категории. По идее все это должно характеризовать уровень сложности задач, которые можно поручить специалисту. По факту же разряды и категории в лучшем случае используются для определения уровня заработной платы.

Читайте также:
Мобильный газгольдер: назначение, конструкция и особенности монтажа, требования к размещению

Но у персонала, имеющего отношение к электротехнике, есть другой способ определения квалификационного уровня. Речь идет о группе допуска по электробезопасности. Поскольку присвоение этой группы происходит только с участием комиссии, состав которой строго оговаривается, а аттестуемому специалисту обязательно выдается удостоверение единого образца, то удостоверение группы допуска становится решающим документом в оценке специалистов .

А оценка нужна, например, во время приема на работу (по удостоверению с предыдущего предприятия – вот почему важно даже старые «корочки» сохранять при себе). Другая ситуация, когда требуется удостоверение группы допуска по электробезопасности – это назначение ответственного руководителя и членов бригады для проведения каких-либо работ в электроустановках.

Группа допуска по электробезопасности специалиста определяет, прежде всего, его уровень знаний безопасных методов работы с электричеством. Всего существует пять групп. Поговорим о каждой из них.

Что означают группы допуска?

1-я группа по электробезопасности присваивается лицам, которые не обслуживают электроустановки (не электротехнический персонал), а также не работают на действующих электроустановках (не электротехнологический персонал). То есть, это люди, не имеющие к электрике никакого отношения. Первую группу обязательно присваивают и лицам из числа электротехнического и электротехнологического персонала при отсутствии у них даже минимального стажа работы в электроустановках и специального образования.

Работодатель должен принять меры, чтобы и эти люди не были никогда поражены электрическим током. Поэтому формально даже грузчик на складе должен иметь удостоверение с первой группой, ведь на складе есть электропроводка и какие-нибудь устройства с электроприводом. На это, как правило, не обращается никого внимания, хотя для присвоения 1-ой группы достаточно лишь инструктажа со стороны специально назначенного лица с группой допуска не ниже 3-ей. Инструктаж заканчивается контрольными вопросами, по результатам которых и принимается решение о присвоении группы.

«Специалист» с первой группой по электробезопасности должен знать об опасности электрического тока, о безопасных методах выполнения своих обязанностей, а также о способах оказания элементарной первой помощи при поражениях электрическим током.

2-я группа по электробезопасности присваивается электротехнологическому и прочему неэлектротехническому персоналу уже по результатам аттестации в комиссии предприятия или отделения Ростехнадзора. Формально для того, чтобы аттестоваться на вторую группу, специалист должен иметь опыт работы в электроустановках 1-2 месяца в зависимости от имеющегося у него образования. Если аттестация на вторую группу первичная, а аттестуемый не имеет электротехнического образования, то перед аттестацией он должен пройти теоретическое обучение в объеме не менее 72 часов.

Электротехнический персонал тоже может быть аттестован на вторую группу допуска при отсутствии специального образования и при минимальном стаже работы в электроустановках по первой группе (хотя представителям с первой группой по сути можно лишь присутствовать во время работ, да и то на почтительном расстоянии).

Лицам со второй группой допуска позволяется работать в электроустановках под присмотром и без произведения подключений. Типичные специалисты, которым необходимо и достаточно иметь вторую группу – это сварщики, машинисты подъемных кранов, лифтеры.

Специалист со второй группой должен иметь знания в объеме первой группы, а кроме этого, иметь представление об общих принципах работы электроустановок, находящихся в его ведении. Навыки по оказанию первой помощи в случае поражения электрическим током должны быть практическими.

Вопрос, где же набраться практического опыта, часто вызывает затруднения, а выход из положения только один – использование тренажеров со специальными манекенами.

Неэлектротехнический персонал, в принципе, не обязан аттестовываться на вторую группу, если его место работы не является электроустановкой. Тем не менее, многие работодатели перестраховываются, и на курсах по получению второй группы запросто можно встретить уборщиц и продавцов. Вторая группа допуска по электробезопасности является максимальной, которую может получить лицо, не достигшее 18-летнего возраста.

3-я группа допуска по электробезопасности присваивается по результатам аттестации в комиссии предприятия или отделения Ростехнадзора. Третья группа может быть только у электротехнического персонала, поскольку предполагается, что специалист с этой группой может самостоятельно осматривать и подключать электроустановки до 1000 вольт, а также входить в состав бригады, обслуживающей электроустановки свыше 1000 вольт при наличии в удостоверении пометки «до и свыше 1000 вольт».

Лицо с третьей группой допуска уже может отвечать за безопасное ведение работ в электроустановках: может быть допускающим бригаду к работе в электроустановках до 1000 вольт, может осуществлять надзор при проведении особо опасных работ, может быть производителем работ в электроустановках до 1000 вольт при выполнении работ по наряду и в установках свыше 1000 вольт при выполнении работ по распоряжению.

Читайте также:
Какие дома лучше монолитные панельные или кирпичные

Получить третью группу допуска можно по прошествии различного времени работы в электроустановках по второй группе. Например, специалист с высшим электротехническим образованием может получить третью группу через один месяц работы по второй группе, а практикант ПТУ – только через шесть месяцев.

Специалист с третьей группой допуска должен иметь знания в объеме, предусмотренном для предыдущих двух групп. Но кроме этого он должен знать электротехнику как таковую, знать устройство электроустановок и порядок их технического обслуживания, иметь навыки освобождения человека от действия электрического тока.

4-я группа по электробезопасности тоже присваивается по результатам аттестации в комиссии предприятия Ростехнадзора. Специалисты с четвертой группой допуска могут выполнять широкий спектр обязанностей: могут выдавать наряд на выполнение работ в электроустановках до 1000 вольт и выдавать распоряжения на выполнение работ в установках свыше 1000 вольт из перечня, утвержденного ответственным за электрохозяйство. При наличии в удостоверении пометки «до и свыше 1000 вольт» специалист с четвертой группой может быть производителем работ и допускающим в установках свыше 1000 вольт.

Специалист с высшим электротехническим образованием может получить четвертую группу допуска через два месяца работы, а человек без среднего образования – только через шесть месяцев работы по третьей группе допуска. Практиканты получить четвертую группу допуска получить не могут в принципе.

Четвертая группа допуска предполагает знания в объеме, предусмотренном тремя предыдущими группами, но электротехнику специалист с этой группой должен знать уже по полной программе ПТУ, уметь читать схемы, знать пожарную и электробезопасность, а также иметь навыки проведения инструктажей и обучения персонала.

5-я группа допуска по электробезопасности предполагает максимальную ответственность специалиста и его способность выполнять любую работу в электроустановках, а также осуществлять руководство такими работами вплоть до выполнения обязанностей ответственного за электрохозяйство. Присваивается пятая группа только по итогам аттестации в комиссии предприятия Ростехнадзора. При наличии в удостовернии пометки «до и свыше 1000 вольт» лицо с пятой группой может быть выдающим наряд/распоряжение, допускающим, ответственным руководителем и производителем работ в любых электроустановках.

Специалист с высшим электротехническим образованием может получить пятую группу допуска через три месяца работы, а человек без среднего образования – только через двадцать четыре месяца работы по четвертой группе допуска.

Пятая группа допуска предполагает знание схем и компоновки всего электрооборудования, находящегося в ведении специалиста, знание норм безопасности, правил использования средств защиты, а также сроков проведения их испытаний.

Лицо с пятой группой должно знать требования нормативных документов по электро- и пожарной безопасности, а также уметь донести и разъяснить эти нормы при проведении инструктажа. Специалист с пятой группой допуска должен уметь организовать руководство работами любой сложности в любых электроустановках.

Кого включить в состав комиссии по аттестации?

Состав комиссии предприятия, предназначенной для аттестации специалистов по электробезопасности, зависит от уровня аттестуемого. Для аттестации электротехнического и электротехнологического персонала необходима комиссия в составе пяти человек, председателем которой является ответственный за электрохозяйство.

В состав комиссии обычно входит и инженер по охране труда, который должен следить за эксплуатацией электроустановок, а также ведущий (главный) инженер предприятия. Все члены комиссии должны быть аттестованы в отделении Ростехнадзора или с участием инспектора из этой организации, причем председатель должен иметь V-ю группу допуска, если в организации эксплуатируются установки свыше 1000 вольт и IV-ю группу, если таких установок в организации нет.

По результатам аттестации комиссия составляет протокол, подписываемый всеми членами, в котором делается запись об оценке знаний аттестуемого, о присвоенной группе по электробезопасности и о дате следующей аттестации. Эти же данные вписываются в специальную таблицу в удостоверении аттестуемого, но там фигурирует только подпись председателя.

Проверка знаний электротехнического и электротехнологического персонала, работающего непосредственно в электроустановках, производится ежегодно. То же самое касается административно-технического персонала с правом работы в электроустановках по должности. Прочий административно-технический персонал, включая инженеров по охране труда, аттестуется один раз в три года.

Что содержится в удостоверении группы допуска?

Кроме информации о пройденной аттестации удостоверение по электробезопасности на первом, титульном листе содержит такую информацию:

  • фамилия, имя и отчество специалиста;
  • должность и место работы специалиста;
  • категория специалиста с точки зрения электробезопасности (ремонтный персонал, оперативный персонал, оперативно-ремонтный персонал, административно-технический персонал, административно-технический персонал с правом по должности).

Титульный лист заверяется печатью предприятия и подписью ответственного за электрохозяйство. В удостоверении ответственного за электрохозяйство расписывается руководитель предприятия.

Последней страницей удостоверения является таблица с заголовком «Свидетельство на право проведения специальных работ». Как следует из заголовка, здесь делаются отметки о праве проводить специальные работы, например, работы на высоте, или работы по испытаниям и измерениям в электроустановках (для специалистов электротехнических лабораторий).

Читайте также:
Как проложить трассу кондиционера: специфика устройства коммуникаций. Трасса для кондиционера

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Кто должен проходить обучение по электробезопасности?

Электробезопасность на предприятии — это комплекс мероприятий, направленный на обеспечение защиты сотрудников от поражения электротоком и другого вредного и опасного воздействия электричества.

Если вы — работник офиса, то не сомневайтесь, что и в вашей компании должен быть ответственный за электробезопасность, а сотрудники должны проходить соответствующее обучение. Действие правил распространяется не только на производственные или строительные организации.

Говоря о правилах, мы имеем в виду ПТЭЭП — Правила технической эксплуатации электроустановок потребителей и Правила по охране труда при эксплуатации электроустановок или ПОТЭЭ. Это документы, на которые необходимо ориентироваться в вопросе электробезопасности.

Группы по электробезопасности

Исходя из категории персонала и оборудования, с которым ему приходится работать, установлено несколько квалификационных групп:

  • I группа — не электротехнический персонал, это, например, операторы ПК. К этой группе относятся те, кто вроде бы не выполняет каких-то сложных и опасных работ, но взаимодействует с оборудованием и теоретически может получить поражение электротоком.

Кто конкретно относится к этой группе, решает руководитель. Такой персонал ежегодно проходит инструктаж . Инструктором может выступать только лицо с группой 3 или выше. Предварительно необходимо разработать программу инструктажа, в которую входит в т.ч. обучение безопасным способам работы и оказанию первой помощи при поражении электрическим током.

  • II группа также присваивается неэлектротехническому персоналу, но уже обслуживающему установки и оборудование с электроприводом. Чтобы получить вторую группу необходимо иметь расширенные знания, а работники с основным общим или со средним полным образованием должны пройти обучение в образовательных организациях в объеме не менее 72 часов .
  • III группа присваивается электротехническому персоналу. Она дает право самостоятельно (единолично) проводить обслуживание, осмотр, подключение и отключение электроустановок до 1000 В.

Как уже выше говорилось, обладатели третьей группы могут инструктировать тех, кому присваивается первая. Они вправе вести надзор за работами в установках, т.е. выступать в качестве административно-технического персонала (могут даже сами не выполнять работы, а только наблюдать за их выполнением).

  • IV группа — электротехнический персонал, который обслуживает электроустановки напряжением выше 1000 В. Требует еще более усиленной подготовки, т.к. это работа связана с высокой ответственностью и силовым оборудованием, таким, например, как трансформаторные подстанции.
  • V группа — ответственные за электрохозяйство и другой инженерно-технический персонал в установках напряжением выше 1000 В (конечно они могут отвечать и за установки меньшего напряжения).

Чем выше группа, тем больший объем знаний должен освоить сотрудник, которому она присваивается. Особо стоит выделить ответственного за электрохозяйство.

Кто это — ответственный за электрохозяйство?

Согласно ПТЭЭП, руководитель организации назначает ответственного за электрохозяйство и (при необходимости) его заместителя из числа собственных специалистов. Им не может быть стороннее лицо, с которым заключен ГПХ договор или специализированная организация . Только штатный специалист.

Есть только одно исключение, когда не обязательно назначать отдельное ответственное лицо, а полную ответственность на себя берет руководитель — если компания не занимается производством, а оборудование имеет номинальное напряжение не выше 380 В.

Хотя и тут не все так просто. Не достаточно издать приказ по предприятию. Необходимо подать заявление-обязательство в местное отделение Ростехнадзора и получить согласование. Кроме того, необходимо быть уверенным, что деятельность организации на 100% не относится к производственной.

Чтобы разобраться, что такое производственная деятельность придется обратиться к Трудовому кодексу (статья 209) и ОКВЭД. К примеру, не являются производством :

  • туристские и экскурсионные услуги;
  • услуги физической культуры;
  • услуги правового характера (юридические, бухгалтерские, консультационные и т.п.)
  • торговля.

Кроме заявления понадобятся дополнительные документы (копии), подтверждающие полномочия заявителя (руководителя организации), на помещение, где ведется деятельность, однолинейную электрическую схему, акт разграничения балансовой принадлежности и эксплуатационной ответственности, технические условия, протоколы испытаний электроустановок.

Они подтвердят, что действительно имеющееся оборудование соответствует параметрам, позволяющим не назначать отдельное лицо, ответственное за электробезопасность.

Как видите, даже если у вас обычный офис, это не означает, что не потребуется никаких действий для обеспечения электробезопасности. А если используемое помещение взято в аренду, то и это не освобождает руководителя от проведения необходимых мероприятий.

Обучение электробезопасности

Обучение по электробезопасности проходят как те, кто уже работает по специальности (т.е. периодически подтверждают уровень знаний) или собирается сменить место работы и хочет сохранить квалификацию.

После прохождения обучения выдается удостоверение , имеющее ограниченный срок действия. Периодичность прохождения в дальнейшем проверки знаний зависит от категории конкретного работника:

  1. Электротехнический персонал , непосредственно организующий и проводящий работы по обслуживанию, наладке, ремонту действующих электроустановок, выполняющий электромонтажные работы, а также сотрудники, обладающие полномочиями по выдаче нарядов и распоряжений проходят обучение и проверку знаний 1 раз в год;
  2. Административно-технический персонал , не относящийся к предыдущей группе, специалисты по охране труда и инспектированию электроустановок — 1 раз в 3 года.
Читайте также:
Межкомнатные двери со стеклом: фото, виды, дизайн и рисунки, цвета, формы вставок

Существует и внеочередная проверка знаний , она проводится, например, при установке нового оборудования, переводе на должность, требующую более высокой группы по электробезопасности, по требованию органов государственного надзора, при перерыве в работе в данной должности более 6 месяцев и т.д.

Можно попробовать провести обучение прямо в компании, но для этого необходимо, чтобы в штате были квалифицированные специалисты, прошедшие аттестацию в Ростехнадзоре. Кроме того, придется организовать сам процесс обучения и проверки знаний, разработать программы обучения и экзаменовки, собрать комиссию, которая будет принимать экзамены и т.д., отвлекая на это немалые ресурсы, в том числе и денежные.

Есть ли смысл затрачивать столько времени и сил или достаточно обратиться в специализированную компанию и пройти, например, дистанционное обучение?

Решение проблем дистанционного обучения

Закон не запрещает проводить курсы обучения рабочим специальностям дистанционно, а также проверять таким образом полученные ранее знания.

В п.п. 1.4.40. ПТЭЭП сказано, что допускается использование компьютерных технологий для всех видов проверки , кроме первичной, а программа должна обеспечивать режим обучения. И ничего не сказано на базе самой организации должен проходить процесс или нет. Поэтому пройти обучение можно без отрыва от производства в удобное время и даже дистанционно.

По сути обучение на расстоянии не отличается от очного, в чем-то даже превосходит его. Посудите сами:

  • Обмен информацией может происходить в любой форме — голосовой (через аудиосвязь), текстовой (отправка документов, нормативов, выполнение тестов и т.д.), визуальной (видеоконференции, формат видео-уроков, общение напрямую с преподавателем в группе или индивидуально);
  • Обмен учебными материалами, заданиями, выполнение тестовых упражнений и экзамен могут проводится намного быстрее . Например, преподавателю не нужно раздавать всем материалы на бумаге — достаточно в пару кликов мышкой отправить их на электронную почту обучающимся.
  • Работник и работодатель не несут дополнительных затрат на проезд, оплату командировочных, если необходимо отправить сотрудника для обучения в другой город.

Единственным минусом можно назвать необходимость наличия сети интернет и устойчивой связи, но это работодатель в состоянии обеспечить, ведь такое соединение явно обойдется намного дешевле, чем проведение обучения на базе организации.

В целом, оценивая дистанционное обучение, его проблемы и перспективы, можно сказать, что это прогрессивный способ получения и подтверждения знаний.

В Attek мы используемые учебные программы, разработанные в соответствии с рекомендациями Ростехнадзора , полностью отвечающие современным условиям работы с электроустановками.

Мы проводим обучение в различных форматах:

  • классическое очное — в офисе нашего центра обучения;
  • с выездом преподавателя на территорию заказчика;
  • дистанционно.

Продолжительность образовательного процесса занимает от 1 до 5 дней . По завершении подготовки по электробезопасности слушателям курсов выдается журнал проверки знаний и удостоверение нового образца. Этих документов достаточно для допуска к работам и прохождения любых видов проверок.

Квалификационные группы по электробезопасности

Работа с профессиональным электрическим оборудованием требует особых знаний и навыков, гарантирующих безопасность необходимых операций. При этом объем и характер таких навыков, конечно, будут зависеть от того, с какой аппаратурой работает сотрудник, а также состав его обязанностей. Для разграничения нужных знаний в действующем законодательстве было введено понятие группы допуска по электробезопасности.

Она представляет собой список квалификационных нормативов, которым должен отвечать работник, чтобы занимать конкретную должность, связанную с эксплуатацией электроустановок. Правила присвоения групп в этой сфере регламентированы двумя основными нормативными документами:

  • приказом Минэнерго от 13 января 2003 года N 6, который определяет, сколько групп по электробезопасности существует, и регулирует правила технической эксплуатации электрооборудования;
  • приказом Минтруда от 24 июля 2013 года N 328н, устанавливающим правила охраны труда при выполнении таких работ.

Присвоение каждой следующей категории допуска подтверждается выдачей удостоверения установленного образца. Это касается всех, кроме первой: для нее выдача удостоверения не предусмотрена.

Категории персонала

Кроме категорий допуска, для дифференциации работников по характеру их должностных обязанностей используется понятие категории персонала:

  • неэлектротехнический – рядовые сотрудники предприятий, которые используют только обычную бытовую и офисную технику, а не промышленное электрооборудование. Однако по роду своей работы они подвергаются риску поражения электрическим током;
  • электротехнологический – работники, производящие эксплуатацию и текущее техническое обслуживание профессионального оборудования;
  • электротехнический – сотрудники с высшим уровнем навыков, позволяющих им выполнять сложные операции с электроустановками, включая их монтаж, пусконаладку, техобслуживание и ремонт.

Электротехнический персонал – это самая многосоставная категория специалистов, работающих с электрооборудованием. Поэтому их принято делить на несколько подкатегорий:

  • административно-технический – инженеры и представители руководящего состава, организующие работы с применением электробоорудования;
  • оперативный – сотрудники, ответственные за обеспечение текущей работы оборудования и принятие срочных решений при его выходе из строя;
  • ремонтный – специалисты, способные распознать сложные неисправности электроустановок и привести их в рабочее состояние;
  • оперативно-ремонтный – работники, способные выполнять функции оперативного и ремонтного персонала и прошедшие спецподготовку по оперативному принятию решений в сложных ситуациях.
Читайте также:
Кран шаровой из нержавеющей стали: виды, характеристики, выбор и монтаж своими руками

Первая группа по электробезопасности

Начальная группа допуска присваивается неэлектротехническому персоналу, то есть рядовым работникам, не контактирующим с промышленным электрооборудованием. Однако они могут получить поражение электротоком от других аппаратов, например, офисной техники, поэтому им нужно иметь базовые знания о профилактике таких ситуаций. Предоставление знаний для них осуществляется в форме инструктажа. Инструктаж по электробезопасности на 1 группу проводит уполномоченный сотрудник, имеющий действующую категорию не ниже третьей.

Проходить инструктаж всем сотрудникам предприятия необязательно. Руководитель организации обязан издать отдельный приказ, в котором прописано, кому присваивается 1 группа по электробезопасности. Остальным работникам, не связанным с эксплуатацией профессионального оборудования, получать ее необязательно. В приказе также указывается, кем проводится присвоение 1 группы по электробезопасности, как производится контроль знаний и т.д. Информация о проведении инструктажа вносится в отдельный журнал. Удостоверение по его результатам не выдается.

2 группа допуска по электробезопасности

Вторая группа электробезопасности – это базовая категория для специалистов, которые допускаются к работе с профессиональной электротехникой. Сотрудники, имеющие высшее или среднее специальное электротехнического профиля, получают эту категорию автоматически. Специалисты без такого образования для ее получения должны пройти спецподготовку продолжительностью не меньше 72 часов. Как правило, такие сотрудники допускаются к выполнению работ только под руководством опытного бригадира или в составе команды.

3 группа допуска

Чтобы получить эту категорию, всем без исключения работникам придется пройти дополнительную подготовку. Программа «Электробезопасность, 3 группа до 1000 В» включает в себя все, что надо знать по электробезопасности 3 группы для самостоятельной работы по эксплуатации и текущему обслуживанию профессиональных электроустановок. В зависимости от имеющегося уровня основного образования для получения этой категории нужно проработать со второй категорией от 1 до 3 месяцев.

4 группа допуска

4 группа по электробезопасности до 1000 В и выше необходима электротехническому персоналу, который выполняет сложные операции с промышленным оборудованием. Также группа не ниже 4 необходима специалисту, который может быть назначен на должность ответственного за электрохозяйство на предприятии. Для ее получения потребуется прохождение подготовки, а также определенный стаж работы с 3 категорией. Его продолжительность вновь будет зависеть от уровня базового образования: она составит от 2 до 6 месяцев.

5 группа допуска

5 группа допуска по электробезопасности – это наивысшая квалификационная категория, которая позволяет работнику производить любые операции со сложной электротехникой, а также осуществлять работы, связанные с высокой степенью ответственности – например, возглавлять аттестационную комиссию предприятия по обучению по электробезопасности. Получить ее можно, только имея определенный стаж работы с 4 категорией: для специалистов с высшим электротехническим образованием его минимальная продолжительность составляет 3 месяца, со средним общим образованием – 24 месяца.

Присвоение группы по электробезопасности по новым правилам

С 2018 года вступили в силу новые правила присвоения категории допуска. Проходить подготовку для получения необходимых знаний и навыков на требуемую категорию работники по-прежнему могут любым удобным способом – например, в организации-работодателе, в учебном центре или даже самостоятельно, пользуясь проверенными источниками.

Однако важное изменение заключается в том, что теперь основной способ получения удостоверения – это сдача квалификационного экзамена в Ростехнадзоре. Еще один возможный вариант – прохождение аттестации в самой организации-работодателе. Однако этот способ характеризуется серьезными организационными сложностями. Основная из них – то, что экзамен должна принимать специально созданная аттестационная комиссия, а возглавлять ее – председатель, имеющий 5 группу по электробезопасности. Назначение на должность председателя специалиста с 4 категорией допускается только в случае, если на предприятии эксплуатируется исключительно оборудование с напряжением до 1000 В.

Разумеется, все эти условия применяются только для присвоения «профессиональных» уровней допуска – то есть начиная со второго. Правила организации инструктажа, заполнения журнала и других мер, необходимых для присвоения неэлектротехническому персоналу первой категории допуска, остались прежними. Такое изменение было вызвано случаями травмирования электрическим током сотрудников, допущенных к эксплуатации промышленного электрооборудования без необходимых знаний. Новые правила призваны исключить такую возможность и повысить общий уровень квалификации такого персонала. Срок действия выданного удостоверения составляет три года. При этом в течение периода его действия для работников предусмотрена регулярная проверка знаний:

  • для электротехнического персонала, выполняющего сложные операции с оборудованием, а также сотрудников, имеющих право выдачи разрешительной документации на ведение работ и ведение оперативных переговоров, — каждый год;
  • для административно-технического персонала, не занятого перечисленными работами, а также специалистов по ОТ, осуществляющих инспектирование электроустановок, — каждые три года.
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: