Как устроена светодиодная лампа на 220 вольт

Устройство светодиодной лампы на 220 вольт

В отличие от прозрачных ламп накаливания, основное устройство светодиодной лампы скрыто под непрозрачным корпусом. Чтобы узнать, что скрывается внутри экономичного осветительного прибора, его потребуется разобрать, приложив небольшие усилия.

Эксперименты показали, что устройства светодиодных лампочек на 220 В от разных производителей имеют незначительные отличия. Поэтому весь ассортимент LED-ламп с цоколем Е14 и Е27 можно разделить на три группы: фирменные, низкокачественные китайские и филаментные.

Фирменные изделия

Конструкция LED-лампы на 220 В от производителей светодиодной продукции с мировым именем аналогична ниже представленному фото. Среди огромной массы лампочек на российском рынке внешне такой образец имеет одно явное отличие – объемный радиатор. Он может быть с ребристой или гладкой поверхностью; металлического цвета или покрыт белым полимером. Но в любом случае такая лампа имеет больший вес в сравнении с дешёвым, некачественным аналогом.

Верхняя часть изделия (рассеиватель) выполняется из стекла или матового пластика в форме полусферы. Как правило, он закреплен на радиатор при помощи специальных защелок или герметика. Под рассеивателем находится печатная плата с SMD-светодиодами, которая надёжно закреплена на радиаторе. Ниже размещается ещё одна плата с радиоэлементами драйвера. Надёжный драйвер – это блок с гальванической развязкой и функцией стабилизации выходного тока. Вся схема драйвера имеет высокую плотность монтажа и состоит из импульсного трансформатор, микросхем, нескольких полярных конденсаторов и множества планарных элементов. Блок драйвера расположен внутри корпуса, который, в свою очередь, соединяет цоколь и радиатор. Электрический контакт между блоком драйвера и платой со светодиодами может быть обеспечен с помощью пайки или коннектора.

Низкокачественные китайские лампочки

Ниже представлена светодиодная лампа в разобранном виде от неизвестного китайского изготовителя.В отличие от предыдущего образца, в данном устройстве отсутствует радиатор и драйвер. Вместо драйвера установлен простой блок питания на основе неполярного конденсатора, который не способен надежно стабилизировать выходной ток. Размещается блок питания в центре платы со светодиодами. С одной стороны – это диодный мост с резисторами. С другой – два конденсатора. В результате простоты такой конструкции стоимость изделия имеет гораздо меньшую стоимость.

Функцию охлаждения в таких лампочках выполняют небольшие отверстия в корпусе. Их эффективность крайне мала, что подтверждено перегоранием кристаллов светоизлучающих диодов. Плата крепится к пластиковому корпусу при помощи защелок. Электрически плата соединяется с цоколем двумя запаянными проводами. Простота такой конструкции не надежна и не способна обеспечить долгосрочную работоспособность устройства.

Filament лампы

Разнообразие лампочек на светодиодах с цоколем Е14 и Е27 не перестаёт расширяться. Очередным ноу-хау стали, так светодиодные лампы филамент (от англ. filament – нить), которые внешне очень схожи с лампами накаливания. Ученым удалось на практике реализовать светодиодный конструктив, визуально напоминающий нить накала и не требующий дополнительного теплоотвода. Использование филамент лампы (ФЛ) в быту, как правило, основывается на эстетических соображениях. В устройстве светодиодной лампы filament основным элементом являются светодиодные нити, от количества которых зависит суммарная мощность изделия. Каждый отдельный филамент – это тонкий стеклянный стержень, поверхность которого равномерно покрыта электрически связанными SMD-светодиодами. Сверху по всей длине нанесён слой люминофора, что придаёт нити жёлтый оттенок. Отвод тепла в ФЛ происходит через тонкую стеклянную колбу, внутренний объём которой заполнен газовой смесью.

Зачастую нехватка места для драйвера вынуждает производителей устанавливать модуль питания низкого качества непосредственно в цоколе осветительного прибора. Результат такого подхода – чрезмерно высокий коэффициент пульсаций, негативно воздействующий на зрение. Чтобы избавиться от вредного мерцания и составить конкуренцию обычным LED лампам, фирмы-изготовители модернизировали конструкцию ФЛ. Между цоколем и колбой стали делать вставку в виде пластикового кольца, за которым скрывается высококачественный драйвер.

Каждый из рассмотренных образцов пользуется спросом на потребительском рынке, а значит, будет развиваться дальше. Возможно, вскоре в устройстве светодиодной лампы на 220В появятся новые функциональные блоки, о назначении которых мы обязательно расскажем в своих статьях.

Немного об основах схемотехники светодиодных ламп

Судя по комментариям, многих людей интересуют не только параметры светодиодных ламп, но и теория их внутреннего устройства. Потому я решил немного поговорить об основах схемотехнических решений, чаще всего применяемых в этой области.

Итак, ядром и главным компонентом светодиодной лампочки является светодиод. С точки зрения схемотехники светоизлучающие диоды ничем не отличаются от любых других, разве только тем, что в смысле применения их как собственно диодов они обладают ужасными параметрами – очень маленьким допустимым обратным напряжением, относительно большой емкостью перехода, огромным рабочим падением напряжения (порядка 3.5 В для белых светодиодов – например, для выпрямительного диода это был бы кошмар) и т.д.

Однако мы понимаем, что главная ценность светодиодов для человечества состоит в том, что они светятся, причем порой достаточно ярко. Чтобы светодиод светился долго и счастливо, ему необходимо два условия: стабильный ток через него и хороший теплоотвод от него. Качество теплоотвода обеспечивается различными конструкционными методами, потому сейчас мы не будем останавливаться на этом вопросе. Поговорим о том, зачем и как современное человечество достигает первой цели – стабильного тока.

Понятное дело, что для освещения более всего интересны белые светодиоды. Делаются они на основе кристалла, излучающего синий свет, залитого люминофором, переизлучающим часть энергии в желто-зеленой области. На заглавной картинке хорошо видно, что токоведущие проволочки уходят в нечто желтое — это и есть люминофор; кристалл расположен под ним. На типичном спектре белого светодиода хорошо виден синий пик:


Спектры светодиодов с разными цветовыми температурами: 5000K (синий), 3700K (зеленый), 2600K (красный). Подробнее тут.

Мы уже разобрались, что в схемотехническом смысле светодиод отличается от любого другого диода только значениями параметров. Здесь надо сказать, что прибор это принципиально нелинейный; то есть, знакомому со школы закону Ома он совершенно не подчиняется. Зависимость тока от приложенного напряжения на таких устройствах описывается т.н. вольт-амперной характеристикой (ВАХ), причем для диода она носит экспоненциальный характер. Из этого следует, что самое незначительное изменение приложенного напряжения приводит к огромному изменению тока, но и это еще не все – при изменении температуры (а также старении) ВАХ смещается. Кроме этого, положение ВАХ слегка разное для разных диодов. Оговорю отдельно – не только для каждого типа, но для каждого экземпляра, даже из одной партии. По этой причине распределение тока через диоды, включенные параллельно, обязательно будет неравномерным, что не может хорошо сказаться на долговечности конструкции. При изготовлении матриц стараются либо использовать последовательное включение, что решает проблему в корне, либо выбирать диоды с примерно одинаковым прямым падением напряжения. Чтобы облегчить задачу, производители обычно указывают так называемый «бин» — код выборки по параметрам (по напряжению в том числе), в которую попадает конкретный экземпляр.

Читайте также:
Как сделать утепление стен изнутри гипсокартоном?


ВАХ белого светодиода.

Соответственно, чтобы все работало хорошо, светодиод необходимо подключать к устройству, которое вне зависимости от внешних факторов будет с высокой точностью автоматически подбирать такое напряжение, при котором в цепи протекает заданный ток (например, 350 мА для одноваттных светодиодов), причем контролировать процесс непрерывно. Вообще, такое устройство называется источником тока, но в случае светодиодов в наши дни модно употреблять заморское слово «драйвер». В целом, драйвером часто называют решения, главным образом предназначенные для работы в конкретном применении – например, «драйвер MOSFET» — микросхема, предназначенная для управления конкретно мощными полевыми транзисторами, «драйвер семисегментного индикатора» — решение для управления конкретно семисегментниками, и т.д. То есть, называя источник тока драйвером светодиодов, люди намекают, что этот источник тока по задумке предназначен именно для работы со светодиодами. Например, он может иметь специфичные функции – что-нибудь в духе наличия светового интерфейса DMX-512, определения обрыва и короткого замыкания на выходе (а обычный источник тока, вообще, должен без проблем работать и на короткое замыкание), и т.п. Тем не менее, понятия часто путают, и, например, называют драйвером самый обычный адаптер (источник напряжения!) для светодиодных лент.

Кроме того, устройства, предназначенные для задания режима осветительного прибора, часто называют балластом.

Итак, источники тока. Самым простым источником тока может быть сопротивление, включенное последовательно со светодиодом. Так делают при малых мощностях (где-то до полуватта), например, в тех же светодиодных лентах. С увеличением мощности потери на резисторе становятся слишком велики, а требования к стабильности тока повышаются, и потому возникает необходимость в более продвинутых устройствах, поэтичный образ которых я нарисовал выше. Все они строятся по одинаковой идеологии – в них имеется регулирующий элемент, контролируемый обратной связью по току.

Стабилизаторы тока разделяются на два типа – линейные и импульсные. Линейные схемы – родственники резистора (сам резистор и его аналоги также относятся к этому классу). Особого выигрыша в КПД они обычно не дают, зато повышают качество стабилизации тока. Импульсные схемы являют собой наилучшее решение, однако они сложнее и дороже.

Давайте теперь кратко пробежимся по тому, что в наши дни можно увидеть внутри светодиодных ламп или рядом с ними.

1. Конденсаторный балласт

Конденсаторный балласт являет собой развитие идеи насчет включения сопротивления последовательно со светодиодом. В принципе, светодиод можно подключить в розетку прямо так:

Встречновключенный диод необходим для того, чтобы не допустить пробоя светодиода в момент, когда сетевое напряжение сменит полярность – я уже упоминал, что светодиодов с допустимым обратным напряжением в сотни вольт не встречается. В принципе, вместо обратного диода можно поставить еще один светодиод.

Номинал резистора в схеме выше рассчитан для тока светодиода около 10 – 15 мА. Поскольку напряжение сети гораздо больше падения на диодах, последнее можно не учитывать и считать прямо по закону Ома: 220/20000

11 мА. Можно подставить пиковое значение (311 В) и убедиться, что даже в предельном случае ток диода не превысит 20 мА. Все выходит замечательно, кроме того, что на резисторе будет рассеиваться мощность около 2.5 Вт, а на светодиоде – около 40 мВт. Таким образом, КПД системы составляет порядка 1.5% (в случае одного светодиода будет еще меньше).

Идея рассматриваемого метода заключается в том, чтобы заменить резистор конденсатором, ведь известно, что в цепях переменного тока реактивные элементы обладают способностью ограничивать ток. Кстати, использовать дроссель тоже можно, более того, так делают в классических электромагнитных балластах для люминесцентных ламп.

Считая по формуле из учебника, легко получить, что в нашем случае требуется конденсатор емкостью 0.2 мкФ, либо катушка индуктивностью около 60 Гн. Здесь становится ясно, почему в подобных балластах светодиодных ламп никогда не встречаются дроссели – катушка такой индуктивности представляет собой серьезное и дорогое сооружение, а вот конденсатор на 0.2 мкФ добыть гораздо проще. Разумеется, он должен быть рассчитан на пиковое сетевое напряжение, причем лучше с запасом. На практике применяются конденсаторы с рабочим напряжением не менее 400 В. Немного дополнив схему, получаем то, что уже видели в предыдущей статье.

«Микрофарад» сокращется именно как «мкФ». Я останавливаюсь на этом потому, что достаточно часто вижу людей, пишущих в этом контексте «мФ», в то время как последнее — сокращение от «миллифарад», то есть 1000 мкФ. По-английски «микрофарад», опять же, пишется отнюдь не как «mkF», но, напротив, «uF». Это потому, что буква «u» напоминает букву “μ” с оторванным хвостиком.

Итак, 1 Ф/F = 1000 мФ/mF = 1000000 мкФ/uF/μF, и никак иначе!

Кроме того, «Фарад» — мужского рода, так как назван в честь великого физика-мужчины. Так что, «четыре микрофарада», но не «четыре микрофарады»!

Как я уже говорил, преимущество у такого балласта только одно – простота и дешевизна. Подобно балласту с резистором, здесь обеспечивается не слишком хорошая стабилизация тока, и, что еще хуже, присутствует значительная реактивная составляющая, что не особо хорошо для сети (особенно при заметных мощностях). Кроме того, при увеличении желаемого тока будет расти необходимая емкость конденсатора. Например, если мы хотим включить одноваттный светодиод, работающий при токе 350 мА, нам потребуется конденсатор емкостью около 5 мкФ, рассчитанный на напряжение 400 В. Это уже дороже, больше по габаритам и сложнее в конструкционном плане. С подавлением пульсаций здесь тоже все непросто. В целом можно сказать, что конденсаторный балласт простителен только для небольших ламп-маячков, не более того.

2. Бестрансформаторная понижающая топология

Это схемотехническое решение относится к семейству бестрансформаторных преобразователей, включающему в себя понижающую, повышающую и инвертирующую топологии. Кроме того, к бестрансформаторным преобразователям также относится SEPIC, преобразователь Чука и другая экзотика, вроде переключаемых конденсаторов. В принципе, драйвер светодиодов можно построить на основе любой из них, однако на практике в этом качестве они встречаются гораздо реже (хотя повышающая топология применяется, например, во многих фонариках).

Один из вариантов драйвера на основе бестрансформаторной понижающей топологии приведен на рисунке ниже.

В живой природе такое включение можно наблюдать на примере ZXLD1474 или варианта включения ZXSC310 (которая в исходной схеме включения, кстати, как раз повышающий преобразователь).

Читайте также:
Как очистить линолеум от зеленки

Здесь светодиод включается последовательно с катушкой. Схема управления отслеживает ток с помошью измерительного резистора R1 и управляет ключом T1. Если ток через светодиод падает ниже заданного минимума, транзистор открывается, и катушка с включенным последовательно с ней светодиодом оказывается подключенной к источнику питания. Ток в катушке начинает линейно нарастать (красный участок на графике), диод D1 в это время заперт. Как только схема управления регистрирует достижение током заданного максимума, ключ закрывается. В соответствии с первым законом коммутации катушка стремится поддержать ток в цепи за счет энергии, накопленной в магнитном поле. В этот момент ток протекает через диод D1. Энергия поля катушки расходуется, сила тока линейно убывает (зеленый участок на графике). Когда ток падает ниже заданного минимума, схема управления регистрирует это и снова открывает транзистор, подкачивая энергию в систему – процесс повторяется. Таким образом, ток поддерживается в заданных пределах.

Отличительная особенность понижающей топологии – возможность сделать пульсации светового потока сколь угодно малыми, поскольку в таком включении ток через светодиод никогда не прерывается. Путь приближения к идеалу лежит через увеличение индуктивности и повышение частоты коммутации (сегодня существуют преобразователи с рабочими частотами до нескольких мегагерц).

На основе такой топологии был сделан драйвер лампы Gauss, рассмотренной в предыдущей статье.

Недостатком метода является отсутствие гальванической развязки – когда транзистор открыт, схема оказывается напрямую соединенной с источником напряжения, в случае сетевых светодиодных ламп – с сетью, что может быть небезопасно.

3. Обратноходовый преобразователь

Несмотря на то, что обратноходовый преобразователь содержит нечто, похожее на трансформатор, в данном случае эту деталь правильнее называть двухобмоточным дросселем, поскольку ток никогда не течет через обе обмотки одновременно. В действительности по принципу действия обратноходовый преобразователь похож на бестрансформаторные топологии. Когда T1 открыт, ток в первичной обмотке нарастает, энергия в запасается в магнитном поле; при этом полярность включения вторичной обмотки сознательно подбирается такой, чтобы диод D3 на этом этапе был закрыт и тока на вторичной стороне не текло. Ток нагрузки в этот момент поддерживает конденсатор С1. Когда T1 закрывается, полярность напряжения на вторичной обмотке становится обратной (поскольку производная тока в первичной обмотке меняет знак), D3 открывается и накопленная энергия передается на вторичную сторону. В смысле стабилизации тока все то же самое – схема управления анализирует падение напряжения на резисторе R1 и подстраивает временные параметры так, чтобы ток через светодиоды оставался постоянным. Чаще всего обратноходовый преобразователь применяется при мощностях не более 50 Вт; далее он перестает быть целесообразным из-за возрастающих потерь и необходимых габаритов трансформатора-дросселя.

Надо сказать, что существуют варианты обратноходовых драйверов без оптоизолятора (например). Они полагаются на тот факт, что токи первичной и вторичной обмоток связаны, и при определенных оговорках можно ограничиться анализом тока первичной обмотки (или, чаще, отдельной вспомогательной обмотки) – это позволяет сэкономить на деталях и, соответственно, удешевить решение.

Обратноходовый преобразователь хорош тем, что он, во-первых, обеспечивает изоляцию вторичной части от сети (выше безопасность), а, во-вторых, позволяет относительно легко и дешево изготавливать лампы, совместимые со стандартными диммерами для ламп накаливания, а также устраивать коррекцию коэффициента мощности.

Немного о пульсациях

Как уже было упомянуто, импульсные источники работают на достаточно высоких частотах (на практике – от 30 кГц, чаще около 100 кГц). Потому ясно, что сам по себе исправный драйвер не может быть источником большого коэффициента пульсаций – прежде всего потому, что на частотах выше 300 Гц этот параметр просто не нормируется, ну и, кроме того, высокочастотные пульсации в любом случае достаточно легко отфильтровать. Проблема заключается в сетевом напряжении.

Дело в том, что, разумеется, все перечисленные выше схемы (кроме схемы с гасящим конденсатором) работают от постоянного напряжения. Потому на входе любого электронного балласта прежде всего стоит выпрямитель и накопительный конденсатор. Предназначением последнего является питать балласт в те моменты, когда сетевое напряжение уходит ниже порога работы схемы. И здесь, увы, необходим компромисс – высоковольтные электролитические конденсаторы большой емкости, во-первых, стоят денег, а, во-вторых, занимают драгоценное место в корпусе лампы. Здесь же коренится причина проблем с коэффициентом мощности. Описанная схема с выпрямителем имеет неравномерное потребление тока. Это приводит к возникновению высших гармоник оного, что и является причиной ухудшения интересующего нас параметра. Причем чем лучше мы будем пытаться отфильтровать напряжение на входе балласта, тем более низкий коэффициент мощности мы получим, если не предпринимать отдельных усилий. Этим объясняется тот факт, что почти все лампы с низким коэффициентом пульсаций, которые мы видели, показывают очень посредственный коэффициент мощности, и наоборот (разумеется, введение активного корректора коэффициента мощности скажется на цене, потому на нем пока что предпочитают экономить).

Пожалуй это все, что в первом приближении можно сказать на тему электроники светодиодных ламп. Надеюсь, что этой статьей я в какой-то мере ответил на все вопросы схемотехнического толка, которые были заданы мне в комментариях и личных сообщениях.

Как устроена светодиодная лампа

С развитием электротехники традиционная лампа накаливания перестает быть единственным вариантом для освещения жилья. На смену ей пришли сначала люминесцентные, а затем и светодиодные (LED) источники света. Светодиодные лампы – энергоэффективные, яркие, безопасные для окружающей среды. Но их устройство заметно сложнее. В статье будет рассмотрено устройство светодиодной лампы, ее плюсы и минусы.

Принцип работы и устройство ламп.

Конструкция LED лампы.

Светодиодный источник света состоит из нескольких элементов, соединенных в одном корпусе. Это цоколь, драйвер, радиатор, светодиод и светорассеивающая колба.

  • Цоколь – элемент, который вкручивается в патрон люстры или другого светильника. Чаще всего для бытового применения выпускают винтовой цоколь типа Е27 и Е14. Он изготовлен из латуни с никелевым антикоррозийным покрытием. Для других нужд выпускаются источники света со штырьковым цоколем.
  • Драйвер – элемент, который стабилизирует поступающее напряжение, преобразуя переменный ток в постоянный. Также он обеспечивает питание светодиода. Драйвер состоит из микросхем, импульсного трансформатора, конденсаторов. В недорогих LED изделиях драйвер может отсутствовать. Вместо него применятся простой блок питания, не обеспечивающий стабилизации тока и напряжения. Также драйвер не устанавливают в миниатюрных лампочках из-за нехватки места внутри корпуса.
  • Радиатор – элемент, который отводит тепло от светодиодов и обеспечивает для них оптимальный температурный режим работы. Обычно он составляет видимую часть корпуса осветительного прибора. Радиатор может изготавливаться из различных материалов: от дорогой керамики до дешевого пластика. Алюминиевые и композитные материалы занимают среднюю нишу: они достаточно бюджетны и качественно отводят тепло.
  • Рассеиватель – прозрачный «колпак», который помогает распределять свет в пространстве. Изготавливается в виде полусферы для рассеивания пучков света под широким углом. В качестве материала применяют поликарбонат или пластик. Кроме этого рассеиватель предотвращает попадание внутрь корпуса пыли и влаги. Для смягчения резкости света и уменьшения раздражающего влияния на глаза этот элемент изнутри покрывают люминофором. При этом достигается цветовая температура, аналогичная естественному освещению.
  • Светодиоды – главный рабочий элемент лампы. За счет работы диода и появляется свечение.
Читайте также:
Как сделать забор Из пластиковых бутылок - из каких можно построить капитальный забор: Инструкция +Фото и Видео и Сколько потребуется пластиковых бутылок для дачного забора?

Принцип работы светодиодных ламп основан на физических процессах в полупроводниках. Свечение появляется после прохождения электрического тока через границу соприкосновения двух полупроводников (n и p), в одном из которых должны преобладать отрицательно заряженные электроны, а в другом – положительно заряженные ионы. Стоит отметить, что данные материалы пропускают ток только в одну сторону. При его прохождении в носители заряда осуществляют рекомбинацию – электроны переходят на другой энергетический уровень. В результате появляется видимое глазу световое излучение. Кроме свечения происходит еще и выделение тепла, которое отводится от светодиода при помощи радиатора.

Схема появления оптического излучения в LED-элементе.

На заре появления светодиоды могли испускать только определенную световую волну: зеленую, красную или желтую. Поэтому LED-элементы встраивались в электрические схемы в виде индикаторов. В процессе развития микроэлектроники были найдены материалы, позволяющие получить световую волну широкого спектра. Однако полностью эта проблема не решена: в свечении светодиодных ламп преобладает или синяя длина волны или красная с желтым. По этой причине они и делятся на холодные и теплые соответственно.

Виды и типы светодиодных ламп.

Четкая классификация у светодиодных ламп отсутствует: изделия производятся слишком разных форм, цветов и конфигураций.

По способу применения:

  1. Источники света общего назначения для освещения квартир и офисов. Характеризуются углом рассеивания от 20 0 до 360 0 .
  2. Изделия направленного света. Такие лампочки называют спотами. Они используются для создания подсветок или выделения интерьерных зон в комнате.
  3. Изделия линейного типа, схожие с привычными люминесцентными лампами. Изготавливаются в виде трубок. Применяются в технических помещениях, офисах, залах магазинов и в других пространствах, где важна пожарная безопасность. Создают яркую, красивую подсветку, которая подчеркнет необходимые детали.

По назначению светодиодные лампы делятся на:

  1. Изделия для уличного применения. Изготавливаются в пыле- и влагозащищенном корпусе.
  2. Изделия для производственных целей, коммунальных служб. Дополняются антивандальным прочным корпусом. Изготавливаются с особыми требованиями к характеристикам освещения: стабильность, срок службы, условия эксплуатации.
  3. Бытовые лампы. Характеризуются невысокой мощностью, стильным дизайном, электро- и пожаробезопасностью, качеством светового потока (индекс цветопередачи, коэффициент пульсации и др.).

Исходя из потребляемого напряжения тоже выделяют три вида ламп:

  1. С питанием 4 В. Маломощные светодиоды, которые потребляют от одного до 4,5 В. Излучают свет разных длин волн от инфракрасного до ультрафиолетового.
  2. С питанием 12 В. Такое напряжение безопасно для человека, поэтому эти источника света подходят для помещений с повышенной влажностью. Часто выпускаются со штырьковыми цоколями, что усложняет процесс подключения. Дополнительная трудность может быть в необходимости специального блока питания, который снизит напряжение сети до 12 В. Удобны для использования автолюбителям и туристам: они могут организовать освещение от аккумулятора.
  3. С питанием 220 В. Самый распространенный вид. Широко применяются для бытовых нужд.

Типы цоколей.

Чтобы LED источники света подходили к уже применяемой схеме электроснабжения домов, их оснащают винтовыми цоколями. В качестве альтернативы светильникам галогенного типа выпускают лампы со штырьковыми цоколями. Основные типы представлены в таблице.

Самый распространенный винтовой тип для бытовых источников света.

Винтовой цоколь для маломощных ламп.

Винтовой цоколь для мощных источников света ( в основном уличных).

Штырьковые контакты для маленьких лампочек.

Штырьковый контакт для мебельных и потолочных источников света.

Аналогично GU5.3, но расстояние между контактами составляет 10 мм.

Штырьковый контакт для плоских светильников.

Контакт, аналогичный люминесцентным трубчатым лампам.

Технические характеристики и маркировка светодиодных ламп.

Выпуском светодиодных источников света занимается множество мировых и российских компаний: OSRAM, Gauss, ASD, Philips, Navigator, ЭРА и другие. О самых популярных из них можно прочитать в статье «Рейтинг светодиодных ламп 2019 года».

Перед покупкой LED лампы стоит внимательно изучить технические ее свойства, указанные на упаковке. Их довольно много. Чтобы не запутаться, рассмотрим их подробнее.

Пример маркировки технических свойств на упаковках.

Мощность (измеряется в Вт). Показывает, сколько электричества потребляет осветительный прибор. По этому параметру светодиодные источники света на порядок превосходят лампы накаливания. На упаковке указывается фактическая и эквивалентная мощность. Лампа на рисунке фактически потребляет 9 Вт. Она заменяет лампу накаливания мощностью 75 Вт. За счет этого достигается экономия электроэнергии и семейного бюджета.

Мощность промышленных и уличных светодиодных источников света может доходить до 1000 Вт. Но для бытовых нужд фактической мощности от 2 до 20Вт вполне хватит. Для удобства пользователей составлены специальные таблицы с эквивалентными мощностями.

Мощность светодиодных, Вт Мощность люминесцентных, Вт Мощность ламп накаливания, Вт
1 3 15
3 7 35
5 11 50
7 15 70
9 19 90
12 25 120
15 31 150
18 36 180

Световой поток (измеряется в Лм). Этим параметром описывается яркость. Чтобы было понятнее можно представить свет от ламп накаливания мощностью 40, 60 и 100 Вт. Их световой поток аналогичен яркости LED-элементов в 400, 600 и 1000 Лм соответственно. Для удобства стоит запомнить последнюю пару цифр и ориентироваться по ним: традиционная 100 ваттная лампа «Ильича» имеет яркость в 1000 Лм.

Срок службы в часах. Количество часов, которое проработает источник света. По этому показателю LED-элементы лидируют: в среднем они работают в 25 раз больше, чем традиционные лампы.

Однако стоит иметь в виду, что яркость лампы напрямую зависит от количества выработанных часов. Чем старше лампа, тем тусклее она светит. В мире принят стандарт L70. И если на упаковке написано, что световой поток по L70 равен 50000 часов, то означает, что по истечении времени яркость составит всего 70% от первоначальной.

Некоторые производители указывают большой срок службы, но приписывают, что гарантируют его при определенных условиях работы: например, если лампа будет работать в сутки не более трех часов. Это тоже прописывается на упаковке, но как правило сбоку.

Тип цоколя. На рисунке указан тип цоколя Е14 − для небольших светильников.

Цветовая температура (измеряется в К). Характеризует теплоту света. Из-за конструктивных особенностей светодиоды способны давать световой поток разной теплоты: с преобладанием синего спектра или красного с желтым.

Цветовая температура имеет широкий диапазон:

  • До 2800 К – теплый желтый свет с красным оттенком (аналогичен лампам накаливания небольшой мощности);
  • 3000 К – теплый белый свет с желтым оттенком (аналог – галогенные источники света);
  • 3500 К – естественный нейтральный белый свет (аналог – люминесцентные лампы; цвет не искажает цветовосприятие, глаза не устают);
  • 4000 К – холодный белый (хорошо освещает пространство, подходит для кухни, офисов, кабинетов);
  • 5000-6000 К – дневной свет (очень яркий, подходит только для производственных помещений);
  • 6500 К и выше – холодный дневной с голубоватым оттенком (применяется в больницах, технических помещениях, при фото- и видеосъемке).

Цветовая температура led-ламп

При подборе цветовой температуры для освещения жилого помещения стоит отметить, что чем она ниже, тем более способствует расслаблению и спокойствию. Более холодные цвета бодрят и настраивают на рабочую обстановку.

Индекс цветопередачи. Определяет, будет ли искажение цветов в помещении. Обозначается латинскими буквами CRI или Ra и цифрами от 1 до 100. Чем ниже его значение, тем сильнее искажение цветов. При индексе 100 искажения не будет совсем. Для использования в доме советуют применять лампы с индексом цветопередачи не менее 80-90.

Габаритные размеры (указываются в мм). Размеры светодиодных источников света чуть больше, чем у аналогичных ламп накаливания. Поэтому, подбирая лампочку к определенному плафону или светильнику, не забудьте проверить габариты. Иначе есть вероятность, что она просто не поместится, куда нужно.

Угол рассеивания. Это угол, на который расходятся световые лучи от источника. Чем параметр выше, тем больше освещаемая площадь. Из-за конструктивных особенностей светодиод всегда светит в основном прямо. Поэтому в лампу встраивают несколько LED-элементов. В зависимости от их расположения внутри корпуса светильника угол рассеивания света может составлять от 30 0 до 360 0 .

Это позволяет создавать, как узконаправленные световые потоки, так широко освещать помещение. Дает возможность для интересных дизайнерских решений. Выбирать угол рассеивания стоит исходя из задачи светильника: для потолочных спотов достаточно 90 0 -180 0 , а для точечной подсветки подойдет и 30 0 .

Также на упаковках указывается:

  • в каком диапазоне напряжений работает источник света (чем он шире, тем выше вероятность того, что источник света, особенно недорогой, не перегорит при скачках в электросети);
  • возможность подключения через диммер – обозначается вот таким значком;
  • коэффициент пульсации (мерцания). Определяется равномерностью свечения. У хороших светодиодных ламп он составляет около 5%, что комфортно для глаз. Источники света с коэффициентом пульсации выше 35% использовать не стоит.

Как подключить светодиодную лампу.

Подключение аналогично лампам накаливания и люминесцентным — следует обесточить патрон и вкрутить в него лампу.

Если необходимо подключить несколько LED источников света, то возможны следующие варианты соединения: последовательный и параллельный.

Однако данное подключение не стоит применять на практике. Даже светодиоды из одной партии не гарантируют одинакового падения напряжений. Из-за этого ток на отдельном LED элементе может превысить допустимый, что может спровоцировать выход элементов из строя.

Последовательный вариант требует минимального количества проводов, но применяется крайне редко. Причиной этому служат два недостатка. Во-первых, при перегорании одной лампочки из строя выходит вся цепь. Во-вторых, лампы работают не в полную силу, так как при последовательном соединении напряжение суммируется. Пожалуй, единственные случаи, где оправдано последовательное соединение – это елочная гирлянда и освещение подъездов. В этих случаях допустимы низкие показатели мощности у многих источников света.

Схема довольно проста:

  • от распределительной коробки фаза идет на выключатель;
  • от выключателя фаза переходит к светодиодной лампе;
  • ко второму контакту последней лампы в цепи подключают нулевой провод;
  • от ламп к друг к другу переходит фазовый провод.

Последовательная схема подключения светодиодных ламп.

Параллельный способ применяется чаще всего. Главное преимущество – подача одинакового напряжения ко всем лампочкам в цепи. В случае перегорания из цепи выпадает лишь, вышедший из строя источник света, который легко заменить.

Параллельно можно соединить двумя способами: лучевым и по шлейфной схеме.

Лучевой метод отличается надежностью. Хотя при этом требуется большое количество кабеля. И важно продумать момент соединения всех элементов. Чаще всего для этого используют клеммную колодку. С одной стороны на ее перемычки подают фазу. С обратной стороны подключают провода, тянущиеся от лампочек. Внутри клеммную колодку рекомендуется заполнить антиокислительной пастой. Также вместо колодки использовать скрутку проводов со спайкой.

Схема параллельного лучевого подключения через клеммную колодку.

При использовании шлейфной схемы фазный и нулевой провода от щитка и выключателя подключаются к первой лампочке. От нее кабель подается на вторую и так далее. Таким образом, каждая лампочка (кроме последней) соединяет с четырьмя проводами: двумя фазными и двумя нулевыми.

Схема параллельного подключения по шлейфной схеме.

Подключение лампочек, работающих от напряжения 12В, аналогично, только в схему необходимо включить понижающий трансформатор.

Схема параллельного подключения точечных светильников 12В через трансформатор.

Преимущества и недостатки светодиодных ламп.

  • энергоэффективность – потребляемая мощность в 8-10 раз меньше, чем у ламп накаливания;
  • большой срок службы – светят примерно в 25 раз дольше ламп накаливания;
  • практически не нагреваются;
  • широкий выбор цветовых температур позволяет «играть» с освещением интерьера;
  • стабильная яркость при перепадах напряжения;
  • мгновенное включение;
  • количество включений не влияет на работоспособность;
  • стойкость к механическим повреждениям и вибрациям;
  • возможность применения в «умном доме»;
  • отличные декоративные качества – выпускается множество интересных форм и размеров;
  • не привлекают мошек и других насекомых из-за отсутствия ультрафиолетового свечения;
  • безопасная утилизация и эксплуатация из-за отсутствия в составе опасных веществ.
  • сравнительно высокая стоимость, хотя она постоянно снижается;
  • мерцание (пульсация), которое невидно невооруженному глазу, но очень опасно для зрения (более распространено в дешевых моделях, которые часто производятся без драйвера);
  • сложность конструкции приводит к повышению стоимости и снижению надежности в сравнении с лампами накаливания;
  • непригодны для использования при очень низких и очень высоких температурах;
  • во многих моделях яркость невозможно регулировать при помощи диммера;
  • если используется выключатель с подсветкой, то LED лампа может мерцать или светиться в выключенном состоянии (как этого избежать, читайте в статье «Почему моргает светодиодная лампа»);
  • снижение яркости в процессе эксплуатации;
  • высокий процент брака среди изделий, особенно среди недорогих.

В заключение стоит отметить, что светодиодные источники света – действительно экономичные осветительные приборы. Только перед выбором надо внимательно изучить технические характеристики.

Во-первых, ими экономически целесообразно заменять лампы накаливания мощностью свыше 60 Вт. Иначе стоимость самой светодиодной лампы не окупится.

Во-вторых, стоит заменять только источники света в светильниках, которые работают максимальное количество часов в день.

И, в-третьих, специалисты советуют вначале опробовать несколько марок светодиодных ламп, чтобы определить, чья цветовая температура (и другие параметры) устроит ваши глаза на 100%.

Как устроена светодиодная лампа и принцип ее работы

  1. Почему она светит?
  2. Конструкция ламп на светодиодах
  3. Плата питания и управления
  4. Плата светодиодов
  5. Прозрачный колпак
  6. В чем выгода таких ламп

Задача снижения количества потребляемой энергии перестала быть только технической проблемой и перешла в область стратегического направления политики государств. Для рядового потребителя эта титаническая борьба выливается в то, что его просто насильно заставляют переходить от привычной и простой как яйцо лампы накаливания к другим источникам света. Например, к светодиодным лампам. Для большинства людей вопрос о том, как устроена светодиодная лампа сводится только к возможности ее практического применения – можно ли ее вкрутить в стандартный патрон и подключить к бытовой сети 220 вольт. Небольшой экскурс по принципам ее действия и устройству поможет сделать вам осознанный выбор.

Почему она светит?

Принцип работы светодиодной лампы основан на гораздо более сложных физических процессах, чем той, которая испускает свет посредством раскаленной металлической нити. Он настолько интересен, что есть смысл познакомиться с ним поближе. В его основе феномен испускания света, возникающем в точке соприкосновения двух разнородных веществ при прохождении через них электрического тока.

Самое парадоксальное в этом то, что материалы, используемые для провокации эффекта излучения света, вообще не проводят электрического тока. Один из них, например, кремний – вещество вездесущее и перманентно попираемое нашими ногами. Эти материалы пропустят ток, да и то в одну сторону (потому они и названы полупроводниками), только если их соединить вместе. Для этого в одном из них должны преобладать положительно заряженные ионы (дырки), а в другом – отрицательные (электроны). Их наличие или отсутствие зависит от внутренней (атомной) структуры вещества и неспециалисту не стоит заморачиваться вопросом разгадывания их природы.
Возникновение электрического тока в соединении веществ с преобладанием дырок или электронов – только половина дела. Процесс перехода одного в другое сопровождается выделением энергии в виде тепла. Но в середине прошлого века были найдены такие механические соединения веществ, у которых выделение энергии сопровождалось еще и свечением. В электронике устройство, которое пропускает ток в одном направлении, принято называть диодом. Полупроводниковые приборы, созданные на основе материалов, которые умеют испускать свет, названы светодиодами.
Первоначально эффект испускания фотонов из соединения полупроводников был возможен лишь в узкой части спектра. Они светились красным, зеленым или желтым. Сила этого свечения была чрезвычайно мала. Светодиод использовался лишь как индикаторная лампа очень долго. Но сейчас найдены материалы, соединение которых излучает свет гораздо большей силы и в широком диапазоне, почти полном видимом спектре. Почти, потому что какая-то длина волны в их свечении преобладает. Поэтому есть лампы с преобладанием синего (холодного) и желтого или красного (теплого) свечения.

Теперь, когда вам в общих чертах понятен принцип работы светодиодной лампы, можно перейти к ответу на вопрос про устройство светодиодных ламп на 220 В.

Конструкция ламп на светодиодах

Внешне источники света, использующие эффект испускания фотонов при прохождении электрического тока через полупроводник, почти не отличаются от ламп накаливания. Главное то, что у них есть привычный металлический цоколь с резьбой, который в точности повторяет все типоразмеры ламп накаливания. Это позволяет ничего не менять в электрооборудовании помещения для их подключения.
Однако внутреннее устройство светодиодной лампы 220 вольт очень сложное. Она состоит из следующих элементов:

1) контактного цоколя;

2) корпуса, одновременно играющего роль радиатора;

3) платы питания и управления;

4) платы со светодиодами;

5) прозрачного колпака.

Плата питания и управления

Разбираясь как устроены светодиодные лампы 220 вольт, в первую очередь стоит понять, что полупроводниковые элементы не могут быть запитаны от переменного тока и напряжения такой величины. Иначе они попросту сгорят. Поэтому в корпусе этого источника света обязательно находится плата, которая снижает напряжение и выпрямляет ток.
От устройства этой платы во многом зависит долговечность лампы. Точнее, какие элементы стоят на ее входе. В дешевых, кроме резистора перед выпрямляющим диодным мостом, ничего нет. Нередко случаются чудеса (обычно в лампах из Поднебесной), когда нет даже этого резистора и диодный мост напрямую подключен к цоколю. Такие лампы светят очень ярко, но срок их службы чрезвычайно низок, если они не подключены через стабилизирующие устройства. Для этого можно использовать, например, балластные трансформаторы.

Наиболее распространены схемы, в которых в цепи питания управляющей схемы лампы создан сглаживающий фильтр из резистора и конденсатора. В самых дорогих светодиодных лампах блок питания и управления построен на микросхемах. Они хорошо сглаживают броски напряжений, но их рабочий ресурс не слишком высок. В основном, из-за невозможности наладить эффективное охлаждение.

Плата светодиодов

Как бы ученые ни старались, изобретая все новые вещества с высокой эффективностью излучения в видимой части спектра, принцип работы светодиодной лампы остается прежним, и каждый её отдельный светящийся элемент очень слаб. Чтобы достичь требуемого эффекта, их группируют по несколько десятков, а иногда и сотен штук. Для этого используется плата из диэлектрика, на которую нанесены металлические токопроводящие дорожки. Она очень похожа на те, что используются в телевизорах, материнских платах компьютеров и других радиотехнических устройствах.
Плата светодиодов выполняет еще одну важную функцию. Как вы уже заметили, в блоке управления нет понижающего трансформатора. Поставить его, конечно, можно, но это приведет к увеличению габаритов лампы и ее стоимости. Проблема понижения питающего напряжения до номинала, являющегося безопасным для светодиода, решается просто, но экстенсивно. Все светящиеся элементы включены последовательно, как в елочной гирлянде. Например, если в цепь 220 вольт включить последовательно 10 светодиодов, то каждому достанется 22 V (правда, величина тока при этом останется прежней).
Недостатком этой схемы является то, что перегоревший элемент обрывает всю цепь и лампа перестает светить. У нерабочей лампы из десятка светодиодов могут быть неисправными лишь один или два. Есть умельцы, которые перепаивают их и живут спокойно дальше, но большинство неискушенных пользователей выбрасывают всё устройство на помойку.

Кстати, утилизация светодиодных ламп – отдельная головная боль, поскольку смешивать их с обычным бытовым мусором нельзя.

Прозрачный колпак

В основном этот элемент играет роль защиты от пыли, влаги и шаловливых ручек. Однако есть у него и утилитарная функция. Большинство колпаков светодиодных ламп выглядят матовыми. Это решение могло бы показаться странным, ведь сила излучения светодиода ослабляется. Но его полезность для специалистов очевидна.
Колпак матовый потому, что на его внутреннюю стороны нанесен слой люминофора – вещества, начинающего светиться под воздействием квантов энергии. Казалось бы, тут, что называется, масло масляное. Но люминофор имеет спектр излучения в несколько раз более широкий, чем у светодиода. Он приближен к естественному солнечному. Если оставить светодиоды без такой «прокладки», то от их свечения глаза начинают уставать и болеть.

В чем выгода таких ламп

Теперь, когда вы уже многое знаете о том, как работает светодиодная лампа, стоит остановиться и на ее преимуществах. Главное и бесспорное – низкое энергопотребление. Десяток светодиодов дает излучение той же силы, что и традиционная лампа накаливания, но при этом полупроводниковые приборы потребляют в несколько раз меньше электричества. Есть и еще одно преимущество, но оно не столь очевидно. Лампы с таким принципом работы более долговечны. Правда, при условии, что питающее напряжение будет максимально стабильно.

Нельзя не упомянуть и о недостатках таких ламп. В первую очередь это касается спектра их излучения. Он значительно отличается от солнечного – того, что человеческий глаз привык воспринимать тысячелетиями. Поэтому для дома выбирайте те лампы, которые светят желтым или красноватым (теплым) и имеют матовые колпаки.

Устройство и принцип действия проточного водонагревателя

Комфорт в быту — основа нормальной жизни человека, поэтому без наличия горячей воды нам уже неуютно. Ремонты теплотрасс в осенне-зимний период и следующие за ними отключения горячего водоснабжения на неделю заставляют греть воду на печке. Современное решение проблемы – установка проточного водонагревателя. Это компактное устройство обеспечит горячей водой семью в любое время суток и в необходимом количестве.

Разновидности

Сегодня на внутреннем рынке России представлен весьма большой выбор электрических водонагревателей разных типов и видов с различным диапазоном цен, при этом качество сборки и отдельные детали могут сильно отличаться. Электрический проточный водонагреватель уже давно пользуется заслуженной популярностью среди пользователей разных регионов РФ из-за простой эксплуатации. Они подразделяются на два основных вида:

  • напорные или закрытого типа;
  • безнапорные – открытого типа.

Первый вариант способен снабжать горячей водой сразу несколько точек: раковину для умывания, душевую кабину, кухню, но для этого необходимо обеспечить довольно высокое давление в магистрали домашнего водопровода.

Второй вариант нормально функционирует при любом давлении в магистрали с подключением непосредственно напрямую к точке водозабора.

Конструкция и особенности

Устройство проточного водонагревателя не отличается особой сложностью. Здесь применяется единая схема для всех моделей: холодная вода проходит через корпус изделия, где нагревательный элемент отдает ей свое тепло. Пользователь только открыл кран — внутри устройства мгновенно срабатывает реле, отвечающее за давление, в течение нескольких секунд вода нагревается до нужной температуры (зависит от мощности ТЭН), которая устанавливается вручную.

Внутри проточный водонагреватель оборудован специальным прерывателем, который сразу отключает питание, если температура воды резко возрастает и становится гораздо выше критического уровня. От возможных перепадов давления внутри водопровода, что может произойти в любую минуту, изделие надежно защищено встроенным стабилизатором.

Водонагреватели этого вида имеют отличия по типу нагревателя и системе управления.

Типы нагревателей

Как главная составляющая конструкции всех электроприборов, нагреватель обычно выпускается в виде спирали или ТЭН. В изделиях с неизолированной спиралью ее помещают в специальный блок из пластиковых трубок, находящийся внутри корпуса из весьма прочного пластика. При подключении такого устройства к сети происходит нагрев спиралей, а проходящий поток воды отбирает это тепло. Из-за малого объема воды в емкости и небольшой массы всего устройства остаточного тепловыделения после отключения не происходит, поэтому накипь не образуется. Такие изделия применяют для подогревания воды в бассейнах, в быту их следует использовать в регионах с очень жесткой водой.

Закрытые ТЭН работают по такому же принципу, нагревая поток проходящей через них воды, но у них спираль заключена в корпус из меди или латуни, поэтому в противопожарном смысле они намного надежнее, чем первый вариант.

Система управления

Водонагреватели проточного типа можно разделить по типу управления ними.

  1. Гидравлическое — этот вид менее точен, у него имеется 6 ступеней мощности, переключение производится вручную при помощи переключателя.
  2. Электронного типа — терморегулятор контролирует нагрев самостоятельно, пользователи только устанавливают приемлемую для них температуру. Такой вид управления считается весьма удобным.

При использовании механического варианта управления внутри изделия располагается гидравлический блок с мембраной, которая осуществляет включение или выключение прибора в зависимости от давления воды.

Недостатком такого управления является тот факт, что при небольшом давлении в водопроводе нагревательный элемент не включится.

Электроника управляет всем процессом с помощью микропроцессора, а специальные датчики помогают ей обеспечить любую температуру, независимо от напора, она же задает оптимальную мощность, существенно сокращая расход электрической энергии.

Принцип работы

Как работает проточный водонагреватель? Поток воды проходит через изделие сравнительно небольшого размера, нагревающее его до нужной температуры. ТЭН используется стандартного типа или в виде нагревающей спирали. В объемных устройствах всегда используется первый вариант, а в миниатюрных — второй, потому что ТЭН просто некуда вставить.

Как только открывается кран, нагревательный элемент включается, водный поток нагревается, с закрытием крана отключается и электропитание изделия. Принцип работы проточного водонагревателя основывается на том, что заданная пользователем температура водного потока набирается за короткое время, а потом только с помощью ТЭН держится постоянной. Внешне обыкновенный электрический водонагреватель проточной конструкции выглядит как пластиковый контейнер небольшого размера, имеющий подключение к домашнему водопроводу.

Когда проточный электрический водонагреватель используется как отдельный кран для горячей воды, то принцип работы его становится еще проще: поток воды мгновенно нагревается мощной спиралью, заключенной в корпус из меди.

Достоинства и недостатки

Сегодня многие пользователи, опробовав накопительные водонагреватели, склоняются к приобретению проточного варианта — это намного экономит площадь помещения, так как они все довольно компактного размера, и сокращает время нагревания во много раз.

Например, чтобы согреть около 10 литров воды накопительный вариант затратит до 25 минут, а если 100 и более, то ждать вам придется не менее 5 часов. Проточный выдает горячую воду моментально, как только вы включаете кран и в таком объеме, который вам требуется.

Приведем преимущества по пунктам.

  1. Простая эксплуатация — включил, умылся или помыл посуду и выключил.
  2. Обеспечивают неограниченным объемом горячей воды на любые нужды — на ожидание нагрева уйдет не более 2 минут.
  3. Не требуется периодического обслуживания специалистами.
  4. Компактный размер, позволяющий установку изделия даже под раковиной в ванной комнате, чтобы не нарушать установившийся интерьер.
  5. Когда большой объем горячей воды не требуется, такие устройства становятся достаточно экономичными (по сравнению с накопительным вариантом).
  6. Их изначальная цена ниже, чем у накопительных водонагревателей.
  7. Вода при нагреве не теряет качеств, потому что расходуется сразу. Возможность размножения вредоносных бактерий отсутствует — при желании ее даже можно пить.

  • такого вида изделия нагревают воду не выше 40 0C;
  • при большой мощности изделия расход электроэнергии увеличивается;
  • когда требуется большое количество воды, то устройство работает продолжительное время и электросчетчик накрутит приличный расход;
  • такого вида изделия предъявляют особые требования к домашней электрической сети — напряжение всегда должно быть величиной постоянной;
  • проточные водонагреватели обеспечивают только одну точку водозабора.

Можно приобрести проточный водонагреватель для обеспечения нескольких точек, но стоимость его будет намного дороже.

Вывод из всего простой: водонагреватели вышеописанного типа удобны для семьи из двух человек, когда потребность в горячей воде минимальная, в другом случае лучше всего поставить бойлер накопительного типа с большим объемом, удовлетворяющим все хозяйственные нужды.

Нюансы эксплуатации

Водонагреватели проточного типа прельщают многих потребителей тем, что у них нет ограничения в использовании объема горячей воды, особенно удобно установить его в душевой кабинке — принимай водные процедуры сколько угодно.

Не всем известно, что установка такого устройства требует ответственности, потому что изделие относится к приборам большой мощности, здесь требуется обязательная прокладка отдельной линии подключения. Монтаж линии и подключение изделия могут проводить только специалисты, при самостоятельной установке вы можете обесточить не только свою квартиру, но и многоквартирный дом.

Чтобы проточный водонагреватель служил долгое время и не огорчал вас частыми поломками, необходимо строго выполнять рекомендации производителя и обращать внимание на такие моменты:

  • монтаж изделия надо делать рядом с местом использования для сокращения потерь тепловой энергии;
  • при наличии в вашем регионе сильно жесткой воды установите специальные защитные фильтры, чтобы обезопасить внутренние детали от накипи;
  • ни в коем случае не устанавливайте изделие на неотапливаемой даче;
  • в ванной комнате устройство расположите таким образом, чтобы на корпус не смогли попасть брызги;
  • при низком давлении используйте изделие на средней температуре — иначе автоматика просто не включится.

Перед первым запуском внимательно выполните следующие действия.

  1. Проверьте наличие воды в домашнем водопроводе и уровень ее напора — он должен быть достаточным. При слабом напоре придется отказаться от использования до лучших времен.
  2. При низком нагревании потока воды выставьте необходимую температуру с помощью кнопок на панели управления.
  3. После окончания принятия душа кран нужно перекрыть, изделие отключить от сети.

Помните! Во многих моделях проточных водонагревателей сделанные настройки сохраняются, поэтому при последующем включении аппарат выдаст настроенную вами температуру воды.

Перед тем как идти в магазин за долгожданной покупкой проверьте качество проводки в доме: старые дома рассчитаны только на 3 кВт/ч на квартиру, поэтому для подключения придется менять всю проводку до распределительного электрощита. Пользователям, которые живут в новых многоэтажных домах, да еще и с электроплитами, повезло: здесь на квартиру допуск выше и начинается от 10 кВт/ч, но это не означает, что вы можете одновременно включить сразу несколько электрических приборов.

В заключение несколько слов об отечественном электрическом проточном водонагревателе Etalon Copper 350 комбинированного типа: кран и шланг для душа с насадкой. Вес конструкции всего 2 кг, габариты — 240х160х95, мощность до 3,5 кВт, максимальная температура нагревания водного потока — 65 0 C, производительность — 3,5 л/м. По своим характеристикам он не уступает зарубежным аналогам и стоит недорого — 2440 рублей, а комплектующие в случае замены найти будет гораздо проще.

Принцип работы проточного водонагревателя

Принцип работы проточного водонагревателя

Жизнь человека в XXI веке стала максимально комфортной. Мы уже стали забывать как это топить жилище дровами и греть воду для того, чтобы принять душ или ванну. Однако плановые отключения горячей воды летом, периодически возвращают нас в прошлое. К счастью, прогресс не стоит на месте, и сегодня можно легко решить эту проблему, установив проточный водонагреватель. Имея небольшие габариты и вес, он отлично впишется в интерьер ванной комнаты или кухни.

Из чего состоит проточный нагреватель

В корпусе проточного водонагревателя находится нагревательный элемент (ТЭН или спираль), регулятор мощности, терморегулятор, который отключает ТЭН при достижении предельной температуры нагрева, и датчики, отвечающие за защиту от включения ТЭНа без воды в системе и температуру нагрева.

Разновидности нагревателей

Различают два основные вида проточных водонагревателей — закрытого типа (напорные) и открытого типа (безнапорные).

Принципиальное отличие напорного заключается в том, что он может работать сразу на несколько точек. То есть установив его в одном помещении, горячей водой можно пользоваться и в ванной, и на кухне и везде, где есть смесители. Прежде чем эксплуатировать устройство такого типа, необходимо убедиться в том, что в водопроводе можно создать довольно высокое давление. При низком давлении напорный нагреватель работать не может.

Безнапорный устанавливается только на одну точку. Для его эксплуатации давление в трубе не имеет значения. Зачастую безнапорные водонагреватели оснащены собственным краном или душем.

Также водонагреватели различаются по типу использования нагревательного элемента. В его качестве которого могут быть использованы ТЭНы или нагревающие спирали. Проточные водонагреватели с ТЭНом внутри имеют большие габариты, со спиралью более компактные.

Ещё одно различие водонагревателей — это тип управления. Механические, более надёжные, регулировка температуры производится вручную с помощью тумблера на корпусе прибора. При поступлении холодной воды, мембрана, находящаяся в корпусе прибора, смещается, приводя в движение рычаг включения. Однако, при слабом напоре в трубе, смещение рычага не произойдёт, а, следовательно, устройство не включится. Электронные, устроены на базе микропроцессоров и множества датчиков. Более точные, позволяют максимально точно установить температуру воды на дисплее. Способны поддерживать любую температуру вне зависимости от напора воды, также используют оптимальный уровень мощности, тем самым уменьшая потребление электроэнергии.

Принцип работы водонагревателя

Принцип работы проточного водонагревателя заключается в том, что вода нагревается и поддерживается заданной температуры, проходя через нагревательный элемент. Устройство подключается напрямую к трубе непосредственно возле раковины. При открытии крана в корпусе проточного водонагревателя срабатывает реле давления. Включается нагревательный элемент и через некоторое время (от трех секунд до двух минут) вода нагревается до заданной пользователем температуры и вытекает через кран. Температура задаётся вручную пользователем.

Как устроен проточный бойлер

Прибор отличается от накопительного устройства только отсутствием бака для скопления воды. В корпусе расположен проточный ТЭН, сквозь который проходит поток воды. Он быстро нагревается, что позволяет получить горячую воду сразу, как только открыли кран.

Внутри корпуса находятся:

  • ТЭН в защитном корпусе. Чаще всего это трубка из пластика или латуни. Преимущество такого нагревателя — неподверженность накипи.
  • Регулятор мощности. Переключает работу между ТЭНами, представляет собой кнопку.
  • Реле и датчики. Последние отвечают за температуру нагрева, контроль количества жидкости, защиту от включения без воды. Реле срабатывают при превышении температуры, отключая ТЭН.

Рассмотрите электрическую схему работы бойлера «Термекс»:

Принцип работы

Поскольку проточный бойлер работает с большой мощностью, для подключения потребуется надежная проводка. Стандартное подключение выполняется трехжильным кабелем, где L — фаза, N — ноль, Е — заземление.

После включения техники электричество поступает на датчик протока. Если напор воды в системе достаточный, датчик замыкает контакты. После срабатывает реле ТЭНа, и запускается нагрев. Термодатчики включаются в случае перегрева. Цепь замыкает лампочка на панели, которая светится во время работы бойлера.

Вот подробная схема устройства прибора:

Особенности моделей

Модели различных марок могут различаться по нескольким критериям.

Тип нагревательного элемента:

  • Открытый — состоит из пластикового корпуса со спиралью внутри. При подаче питания спираль нагревается и передает тепло проходящему потоку.
  • Закрытый — принцип работы тот же, только спираль заключена в корпус из латуни или меди. Является более пожаробезопасным.

Управление:

  • Механический (гидравлический) тип. Регулируется с помощью переключателя и имеет 6 режимов мощности. Система состоит из блока и мембраны, которая при потоке смещается и выталкивает кнопку выключения. Минусом механики является неточность — может не сработать при недостаточном напоре.
  • Электронный тип. Содержит микропроцессор и датчики. Эта точная система позволяет удерживать заданную температуру, а также подстраивать мощность для экономии энергии.

Разновидности:

  • Закрытого типа (напорные). Обеспечивает высокое давление в трубах, чтобы обслуживать несколько точек забора. Вы сможете одновременно использовать душ и смеситель на кухне. При этом температура воды не будет снижаться.
  • Открытого типа (безнапорные). Подключаются к одной точке забора. Отличаются компактным корпусом, поэтому их можно устанавливать отдельно на кран или душ.

Как устроен

Проточная модель отличается от накопительного бойлера тем, что в конструкции отсутствует бак для накопления горячей воды. Холодная вода напрямую подается на нагревательные элементы и выходит уже нагретой через смеситель либо кран.

Рассмотрим на примере устройство проточного водонагревателя Термекс:

Как вы видите, электрическая схема нагревателя достаточно простая. Все элементы конструкции можно легко отыскать и приобрести, если аппарат выйдет из строя

Теперь перейдем ко второму, не менее важному вопросу — рассмотрим, как работает проточный водонагреватель

Принцип действия

Итак, на примере предоставленного выше нагревателя от фирмы Термекс рассмотрим его принцип работы.

Подключение к электросети осуществляется трехжильным кабелем, где L — это фаза, N — ноль, а PE либо E — заземление. Далее питание поступает на датчик протока, который срабатывает и замыкает контакты в том случае, если напор воды достаточный для работы. Если же воды нет либо напор очень слабый, включение нагрева не произойдет, в целях безопасности.

В свою очередь при срабатывании датчика протока включается реле управления мощностью, которое отвечает за включение ТЭНов. Датчики температуры, которые расположены дальше в электрической цепи, предназначены для отключения нагревательных элементов при перегреве.

При этом термодатчик Т2 включается после остывания ТЭНов в ручном режиме. Ну и последний элемент конструкции — неоновый индикатор, который отображает процесс нагрева воды.

Вот и весь принцип работы проточного электрического водонагревателя. Если вдруг устройство вышло из строя, воспользуйтесь данной схемой, чтобы найти неисправный элемент.

В других моделях может быть измененная схема работы, к примеру, будет присутствовать терморегулятор, как на изображении ниже.

При подаче холодной воды эта мембрана смещается, тем самым выталкивая рычаг включения через специальный шток. Если же напор слабый, смещение не произойдет и нагрев не включится.

Как установить проточный нагреватель воды

Процесс установки проточного водонагревателя своими руками включает подготовительный период

В первую очередь важно правильно определиться с моделью. Чтобы выбрать прибор, оптимально подходящий по характеристикам, учитывают следующие факторы:

  • количество проживающих в доме людей;
  • максимальный расход горячей воды при одновременно открытых всех кранах;
  • количество водоразборных точек;
  • требуемая температура воды на выходе из крана.

Четко представляя требования, можно приступать к выбору проточного нагревателя подходящей мощности

Отдельно стоит обратить внимание на другие нюансы: сложность монтажа, цена, ремонтопригодность и наличие в продаже запчастей

Организация электроснабжения

Мощность бытовых проточных нагревателей варьируется от 3 до 27 кВт. Старая электропроводка такой нагрузки не выдержит. Если безнапорный прибор, рассчитанный на 3 кВт, еще можно подключить к существующей электросети, то мощные напорные модели требуют прокладки отдельной линии.

Мощный водонагреватель нельзя подключать к розетке. От прибора прокладывают прямую линию к электрическому щиту. В цепи предусматривают УЗО. Защитный автомат подбирают согласно мощности проточного электроприбора. По стандарту показатель составляет 50–60 А, но нужно смотреть инструкцию прибора.

Сечение кабеля подбирают аналогично с учетом мощности нагревателя, но не менее 2,5 мм 2 . Провод лучше взять медный и обязательно трехжильный. Без заземления проточным водонагревателем пользоваться нельзя.

Подключение электропитания

Для подключения питания в большинстве случаев используется клеммная колодка, расположена под защитной крышкой на корпусе водонагревателя. Где именно она находится и как до нее обраться, следует уточнять в инструкции. Шнуром питания с вилкой для подсоединения к розетке снабжаются только маломощные нагреватели на 1,5-2 кВт. Однако и в этом случае желательно обойтись прямым подключением к отдельной линии, для которой в щитке выделен автомат и УЗО.

Схема подключения водонагревателя к элекричеству

Подключение выполняется трехжильным медным кабелем сечения не менее 2,5 мм2, если иного не указано в инструкции. Чем выше потребление, тем толще должен быть кабель. В Таблице указаны требования к кабелю, отталкиваясь от мощности и тока.

Алюминий Сечение провода, мм2 Медь
Сила тока, А Мощность, кВт Сила тока, А Мощность, кВт
14 1,0 14 3,0
15 1,5 15 3,3
19 3 2 19 4,1
21 3,5 2,5 21 4,6
27 4,6 4,0 27 5,9
34 5,7 6,0 34 7,4
50 8,3 10 50 11

На линии для водонагревателя больше не должно быть оборудования, как и на автомате с УЗО. Допускается установка защиты и автомата непосредственно возле водонагревателя, однако следует их монтировать в специальные влагозащищенные боксы

Конструкция

Корпус проточного электроводонагревателя обычно представляет собой цилиндр весом порядка 2 кг. Внутри находятся:

Нагревательный элемент

Бывает двух типов:

  • неизолированная спираль;
  • трубчатый электронагреватель (ТЭН).

Первый вариант — спираль в чистом виде — находится внутри блока из полимерных трубок, который в свою очередь заключен в прочный корпус из того же материала. Внутренний объем прибора с таким нагревателем достаточно мал, также мала и его масса, соответственно, аккумуляции тепла не происходит.

Устройство проточного водонагревателя

По этой причине после отключения питания водонагреватель остывает моментально, так что накипь на его внутренних стенках отложиться не успевает. В основном такие проточники применяются в бассейнах для подогрева воды, но иногда и в бытовых условиях — при наличии в воде большого количества солей жесткости.

ТЭН — это та же спираль, но помещенная в трубку из меди или латуни, заполненную кварцевым песком. Такой вариант более надежен с точки зрения электробезопасности.

Датчик протока либо его механический аналог

Данный элемент обеспечивает подачу питания на нагреватель в тот момент, когда будет зафиксировано движение воды. То есть аппарат включается автоматически, как только пользователь откроет кран. В простых моделях, не оснащенных электронной системой управления, датчика как такового нет.

Вместо него имеется мембрана, механически связанная с выключателем и реагирующая на давление воды. Недостаток такого решения в том, что при малом напоре в трубопроводе нагреватель может и не включиться.

Датчик перегрева

Отключает питание нагревателя, если вода греется слишком сильно. Верхний порог обычно составляет +60 0С или +70 0С.

Удобно, когда на приборе имеется лампочка-индикатор срабатывания датчика перегрева. Без нее пользователю трудно понять, отключился ли водонагреватель из-за перегрева, либо вследствие неисправности.

Органы управления

С их помощью можно менять мощность нагрева и расход воды. Температура воды на выходе зависит и от того, и от другого. В приборах с электроникой обычно имеется возможность настройки желаемой температуры воды, а регулировку мощности и напора водонагреватель осуществляет сам. Значение температуры может выводиться на дисплей.

Собственно, УЗО находится не в корпусе, а на сетевом шнуре. Полное название этого элемента — устройство защитного отключения.

Оно размыкает цепь в случае обнаружения утечки тока, которая имеет место при поражении пользователя током или при пробое фазы на заземленный корпус или на металлический трубопровод.

Любой имеющийся в санузле электроприбор, особенно контактирующий с водой, нужно подключать через УЗО. Но в случае с «проточниками» по причине их большой мощности производители решили не полагаться на благоразумие пользователей и сами оборудуют их УЗО.

УЗО не защищает цепь и прибор от короткого замыкания или скачков напряжения, как иногда пишут в Интернете. Так что наличие этого устройства не освобождает от необходимости устанавливать автоматический выключатель или предохранитель.

Электрические проточные водонагреватели: как они работают и как их выбрать

Наличие горячего водоснабжения является одним из основных признаков благоустроенности жилища. Проточные водонагреватели, работающие на электричестве, позволяют полностью обеспечит людей проживающих в частном доме или квартире нагретой до определённой температуры водой. О том, что представляют собой водонагреватели этого типа, а также какой модели отдать предпочтение будет подробно рассказано в этой статье.

Электрический проточный водонагреватель: принцип работы

Проточный водонагреватель – это прибор, в котором нагрев жидкости происходит во время её движения. Основное преимущество подобных водогрейных установок заключается в их компактности. Также электронагреватели позволяют осуществлять нагрев жидкости практически мгновенно, что особенно удобно при установке на даче, когда жильём пользуются не на постоянной основе.

Проточный водонагреватель состоит из колбы небольшого объёма, в которой находится ТЭН. Вода, проходя по колбе, нагревается до определённой температуры, после чего поступает к водоразборным точкам. Для предотвращения закипания воды, а также для своевременного включения прибора, в устройстве используются различные датчики и реле. Для обеспечения электротехнической безопасности, корпус водонагревателя обязательно соединяется с заземляющим контактом проводки.

В зависимости от мощности устройства водонагреватель может быть установлен в одной водоразборной точки либо иметь разводку ко всем потребителям горячей жидкости.

Какие бывают проточные нагреватели

Проточные элетронагреватели разделяются на следующие виды:

  • Напорные.
  • Безнапорные.

Напорные устройства подходят для обеспечения многоэтажного дома с большим количеством точек водоразбора, но этот вид нагревателей будет работать только при условии создания в подающем водопроводе довольно высокого давления.

Безнапорные приборы работают в водопроводной системе без значительного давления, но использовать этот вид нагревателей для нескольких потребителей не получится. Обычно безнапорные устройства устанавливаются непосредственно возле крана или душа. Многие модели имеют встроенный кран в нижней части водогрейного прибора.

Устройство должно быть правильно установлено, ведь если вмонтировать безнапорный водонагреватель в систему, где имеется повышенное давление жидкости, то во время эксплуатации прибор может быть выведен из строя в результате прорыва рабочей оболочки.

Напорные и безнапорные устройства могут также иметь различный тип нагревательного элемента. В приборе могут быть установлены:

  • ТЭН
  • Неизолированная спираль

Если в приборе используется обычный ТЭН высокой мощности, то образование накипи, при использовании жёсткой воды, может стать основной причиной скорой поломки устройства.

ТЭН проточного водонагревателя

Неизолированная спираль лишена такого недостатка, но при эксплуатации может легко повредиться при наличии в водопроводной системе воздушных пробок.

Все проточные электрические водонагреватели можно разделить по типу управления. Принцип регулирования температуры нагреваемой жидкости может быть следующим:

  • Гидравлическим
  • Электронным

Устройства, оснащённые гидравлическим управлением являются очень надёжными, но, как правило, в таких приборах для переключения режимов работы водонагревателя следует производить механическое переключение тумблера, расположенного на корпусе устройства.

При использовании водонагревателей с электронным управлением можно достаточно точно выставить температуру на дисплее, которая будет поддерживаться автоматически.

Немаловажной характеристикой проточных нагревателей является производительность. Выражается она в объёме воды нагретой до определённой температуры в течение 1 минуты. Чем большее количество водоразборных точек будут работать одновременно, тем с большей производительностью должен быть установлен проточный водонагреватель.

Проточный электрический водонагреватель: плюсы и минусы

Водогрейное оборудование проточного типа имеет недостатки и преимущества в сравнении монтажом других систем горячего водоснабжения. Чтобы разобраться в основных плюсах и минусах проточных водонагревателей, далее будут рассмотрены положительные и отрицательные характеристики таких устройств.

  1. Производство неограниченного количества горячей воды.
  2. Высокая скорость нагрева жидкости.
  3. Подходит даже для небольшого помещения, т. к. не занимает слишком много места.

Компактное водогрейное устройство проточного типа

  1. Вода не застаивается как в накопительных бойлерах.
  2. Относительно невысокая стоимость.
  1. Высокая нагрузка на электропроводку.
  2. Относительно невысокая температура нагрева, особенно в зимний период.

Негативных характеристик у проточных водонагревателей не так много, но на недорогих моделях, могут наблюдаться серьёзные проблемы с правильной регулировкой температуры воды.

Регулировка температуры воды

Как уже было сказано ранее, проточные водонагреватели могут иметь механическое или электронное управление нагревом жидкости. Вне зависимости от типа используемого устройства, эксплуатация прибора должна осуществляться с правильно подобранным температурным режимом:

  • Для душа – 40 градусов.
  • Для мытья посуды – 45 градусов.

Такое значение температуры горячей воды позволяет добиться не только комфортного использования проточного оборудования, но и значительно экономить электроэнергию. Несмотря на повышенную мощность такого вида водогрейных приборов, снижение затрат на горячее водоснабжение осуществляется за счёт небольшого времени работы прибора.

Как выбрать проточный водонагреватель электрический в квартиру, на душ

От правильного выбора водогрейного прибора будет зависеть не только обеспечение горячей водой в необходимом объёме, но и продолжительность эксплуатации устройства. При выборе проточного прибора для установки в квартиру или в частный дом необходимо руководствоваться следующими принципами:

  • Мощность устройства не должна превышать максимально разрешённое значение тока. Если будет установлен слишком мощный прибор, то при открытии крана горячего водоснабжения, возможно аварийное выключение электричества. Если необходимо обеспечить горячей водой большой дом, то в этом случае рекомендуется выбрать трёхфазное устройство. Прежде чем приобретать такой прибор следует также убедиться в том, что существует возможность подключения трёхфазной электрической сети.
  • Тип управления прибором также имеет существенное влияние на принятие окончательного решения в пользу покупки определённой модели проточного водонагревателя. Электронный вариант регулирования температуры воды позволяет осуществлять более точную установку этого параметра, а также производить изменения нагрева с помощью дистанционного пульта управления.
  • Внешний вид устройства, а также качество лакокрасочного покрытия имеет не самое последнее значение при выборе проточного водонагревателя. При равных технических показателях предпочтение следует отдать модели, которая идеально впишется в дизайн помещения.

Идеально впишется в любой интерьер

Если водонагреватель приобретается для установки только в ванной комнате или на кухне, то достаточно приобрести устройство мощностью около 5 кВт. Стоимость проточного устройства, в этом случае, составит всего около 2500 рублей.

Чтобы водогрейное оборудование прослужило много лет, без каких-либо отклонений в работе, рекомендуется приобретать устройства известных производителей.

Топ 5 моделей проточных электрических водонагревателей

Упростить процесс выбора качественного проточного водонагревателя можно, если руководствоваться рекомендациями реальных покупателей этого вида электрических приборов. Наибольшей популярностью у населения пользуются следующие модели:

Electrolux Smartfix

Мощный, компактный и недорогой водогрейный прибор. Производительность водонагревателя составляет 3,7 литра в минуту. Гидравлическая система управления устройством позволяет выбрать 1 из 3 температурных режима. Потребление электричества при переключении режимов также меняется соответственно. Прибор имеет встроенную систему защиты от перегрева, а также комплект, состоящий из водопроводного крана, душевого шланга и насадки. Основным недостатком этого устройства является только отсутствие возможности подключения более 1 водоразборной точки. Также следует учесть тот факт, что водонагреватель этой модели будет работать только в том случае, если в водопроводе будет обеспечено минимально давление жидкости в 0,04 Бар.

Timberk WHEL

Эта модель проточного электрического водонагревателя от известного скандинавского бренда имеет отличные эксплуатационные характеристики. Несмотря на ограничение в использовании устройства более чем в одной точке водоразбора, прибор является очень популярным у покупателей, по причине небольшой стоимости и высокой производительности. При этом, компактные размеры устройства позволяют осуществить монтаж в любой точке ванной комнаты или кухни. Вес прибора также небольшой и составляет всего 1,19 кг. Этот прибор позволяет осуществлять нагрев воды от 16 до 60 градусов с интенсивностью до 4,5 л/мин, но только при условии подключения к водопроводу с минимальным давлением 0,03 Бар.

Hyundai H-IWR1

Проточный водонагреватель, предназначенный для установки только для одной точки потребления. Прибор укомплектован стандартными насадками, поэтому его можно будет использовать сразу после подключения к системе водоснабжения и электрической сети. Производительность водогрейного устройства составляет 3,6л/мин при мощности 5,5 кВт. Проточный прибор имеет встроенную защиту от перегрева, поэтому весь процесс управления заключается только в механической установке максимальной температуры нагрева воды.

CLAGE CEX 9

Водонагреватель CLAGE CEX 9 рассчитан на работу под большим давлением, поэтому его можно установить таким образом, чтобы можно было обеспечить все водоразборные точки достаточным количеством горячей воды. Конечно, высокая производительность отразилась на стоимости водогрейного оборудования. Цена водонагревателя этой модели примерно в 10 раз выше небольших моделей устанавливаемых непосредственно в водоразборной точке. Мощность водогрейной оборудования устанавливается на стадии монтажа. Нагреватель может работ в режиме 6 или 8 кВт, но даже при повышенной мощности устройству, для нормальной работы, достаточно напряжения 220 В.

STIEBEL ELTRON

Проточный водонагреватель мощностью 24 кВт позволяет обеспечить одну или несколько водоразборных точек. Производительность нагрева составляет не менее 12 л/мин, при разнице входящей и выходящей жидкости в 28 градусов Цельсия. Благодаря установленному нагревательному элементу из высококачественной меди удаётся добиться безотказной работы устройства в течение длительного времени. Также в водогрейную систему встроена защита от перегрева, что также позволит сохранить работоспособность прибора в случае отказа основных регулирующих нагрев элементов. Наличие подведённого трёхфазного тока, является обязательным условием для подключения STIEBEL ELTRON, поэтому выбирайте этот вид проточных водонагревателей только для установки в частном доме.

Отличие проточного водонагревателя от накопительного заключается, прежде всего, в быстром нагреве воды, при этом количество горячей жидкости может быть неограниченным. Именно эти преимущества являются основными при выборе автономной системы горячего водоснабжения этого типа.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: