Как рассчитать мощность ИБП

Выбор ИБП на примере продукции APC

Источник бесперебойного электропитания (ИБП) – это автоматическое устройство, основная функция которого – питание подключенной нагрузки за счёт энергии аккумуляторных батарей при пропадании сетевого напряжения или выхода его параметров (напряжение, частота) за допустимые пределы. Кроме этого, некоторые ИБП могут корректировать параметры электропитания при работе от электрической сети, т.е. выполнять функции фильтра и стабилизатора.

В данной статье выбор ИБП иллюстрируется на примере продукции компании APC (American Power Conversion), основанной в 1981 году тремя инженерами-электротехниками, закончившими Массачусетский технологический институт (MIT).
Первый ИБП был выпущен компанией в 1984 году, а с 2007 г. APC является подразделением корпорации Schneider Electric и в настоящее время является лидером рынка систем бесперебойного электропитания и обладателем многочисленных наград.

В начале 2010 года компания APC выпустила обновленную модель серии RS – Back-UPS RS 550 (BR500GI) Данное устройство обладает новой интересной функцией энергосбережения. Она реализована в виде “зависимых” выходных розеток UPS, которые обесточиваюся, если вы выключаете компьютер, подключенный к “основным” розеткам устройства.
Таким образом можно экономить энергию, автоматически отключая оборудование типа хабов, модемов, роутеров и прочей периферии, обычно ненужной при неработающем компьютере. Еще одним важным новшеством, делающим использование UPS более удобным, является наличие жидкокристаллического дисплея, отображающего развернутую информацию о состоянии ИБП и электросети.

Для справки: В Российской Федерации стандарт бытового электропитания следующий: действующее напряжение – 220 В ± 10%, частота 50 Гц ± 1%, коэффициент несинусоидальности – длительно до 8%, кратковременно до 12%. Таким образом, напряжение в сети должно менять свое значение по синусоиде с периодом 1/49 – 1/51 сек, находиться в пределах 196 В – 242 В и отличаться по форме от идеальной синусоиды не более чем на 8%.

Мощность источников бесперебойного питания указывается в вольт-амперах (VA), а мощность в более привычных в ваттах (Вт) можно узнать, умножив мощность в вольт-амперах на коэффициент 0,6. Например, ИБП с характеристикой мощности 700VA защитит бесперебойным питанием технику с максимальным потреблением 420 Вт.

Рассчитать мощность подключенной нагрузки можно, просуммировав мощность всех подключенных к ИБП потребителей, для персональных компьютеров эта мощность всегда меньше, чем номинальная мощность их блоков питания (как правило – в полтора-два раза) и зависит от особенностей конкретной конфигурации, ориентировочно её можно рассчитать, например, воспользовавшись FAQ по подбору необходимого блока питания.
Пример: системный блок компьютера с блоком питания номиналом 350Ватт потребляет 250 Вт + монитор 45Вт = 295 Вт, разделив эту цифру на 0.6, получаем 491VA, т.е. для такой конфигурации минимально подходящая мощность ИБП – 500VA.

Предположительное время работы ИБП при заданном уровне нагрузки проще всего выяснить, посмотрев документацию предоставленную производителем. В данной статье далее приводятся ссылки на диаграммы времени работы всех упоминаемых семейств ИБП APC. Обычно для максимальной нагрузки время автономной работы измеряется несколькими минутами, что, как правило достаточно для сохранения пользовательских данных и корректного выключения оборудования.

Помните также, что зависимость времени автономной работы от мощности подключенной нагрузки имеет нелинейную форму из-за падения КПД преобразователя при снижении нагрузки относительно номинальной, например, для ИБП серии BackES эта зависимость имеет вид, приведённый на графике слева. Понимание этого факта избавит вас от покупки слишком мощного ИБП в целях обеспечения длительной работы подключенного оборудования – подобная затея вряд ли кончится успешно, так как при работе от батарей на мощности, в разы меньшей чем номинальная для ИБП, их ресурс будет преимущественно расходоваться инвертором, а не нагрузкой.

Ещё одним фактором, снижающим время автономной работы ИБП, является падение ёмкости аккумуляторных батарей. Ёмкость аккумуляторных батарей падает в течении срока эксплуатации, об этом необходимо помнить, если аккумуляторы в данном ИБП эксплуатируются существенную часть их жизненного цикла (обычно он составляет от двух до четырёх лет).

Что такое драйвер и для чего он нужен светодиодам

Сейчас уже можно разделить светодиоды на два основных подтипа: индикаторные и осветительные. Осветительные светодиоды – относительно новые элементы светотехники. Первые модели применялись как индикаторы еще лет 30 назад. Но прогресс на месте не стоит. Инженерам удалось получить большую яркость при минимальном размере и потребляемом токе в сравнение с лампами. Кроме того, светодиоды имеют намного большую механическую прочность. Как лампочку их уже не разобьешь.

Светодиодная осветительная продукция серьезно потеснила практически все другие источники света. Светодиоды могут обеспечить освещение не хуже лампового. А их энергоэффективность намного выше. Обычно источники света на основе светодиодов окупаются в течение года. Сейчас их можно встретить в качестве домашнего освещения, уличных фонарей. Они устанавливаются в световое оборудование автомобилей. Даже в мониторах и телевизорах они заменили лампы подсветки .

Назначение.

Светодиод весьма чувствителен к качеству электропитания. Если пониженное напряжение ему не сделает ничего плохого, то повышенные напряжения и токи очень быстро снижают ресурс этих перспективных источников света. Многие видели, наверное, как на автомобилях хаотично моргают огни. Этот светодиод уже отслужил.

Для обеспечения стабильного электропитания (поддержания заданного напряжения и тока) необходима дополнительная электронная схема – блок питания или драйвер питания. Часто его называют led driver.

Читайте также:
Минеральная вата для утепления пола: как утеплить пол минватой своими руками

Принцип работы.

Электронная схема должна обеспечить строго стабилизированные напряжение и ток, подводимые к кристаллу. Небольшое превышение в цепи питания существенно снижает ресурс светоизлучателя.

В простейшем и самом дешевом случае просто ставят ограничительный резистор.

Питание диода через ограничивающий резистор.

Это простейшая линейная схема. Она не способна автоматически поддерживать ток. С ростом напряжения, он будет расти, при превышение допустимого значения произойдет разрушение кристалла от перегрева. В более сложном случае управление реализуется через транзистор. Недостаток линейной схемы – бесполезное рассеивание мощности. С ростом напряжения будут расти и потери. Если для маломощных LED-источников света такой подход еще допустим, то при использовании мощных светоизлучающих диодов такие схемы не используются. Из плюсов только простота реализации, низкая себестоимость, достаточная надежность схемы.

Можно применить импульсную стабилизацию. В простейшем случае схема будет выглядеть так:

Пример.Импульсная стабилизация (упрощенно)

При нажатии на кнопку происходит заряд конденсатора, при отпускании, он отдает накопленную энергию полупроводнику, а тот излучает свет. При росте напряжения время на зарядку сокращается, при падении – увеличивается. Вот так на кнопку и надо нажимать, поддерживая свечение. Естественно, сейчас это все делает электроника. В источниках питания роль кнопки выполняет транзистор, либо тиристор. Это — принцип ШИМ — широтно-импульсная модуляция. Замыкание происходит десятки, а то и тысячи раз в секунду. КПД ШИМ может достигать 95%.

Категорически не стоит путать светодиодный драйвер и ПРА для люминесцентных ламп, у них разные принципы работы.

Характеристики драйверов, их отличия от блоков питания LED ленты.

Если сравнивать драйвер и блок питания, то у них есть различия в работе. Драйвер – это источник тока. Его задача поддерживать именно определенную силу тока через кристалл или светодиодную линейку.

Задача стабилизированного блока питания в выдаче именно стабильного напряжения. Хотя блок питания – понятие обобщенное.

Источник напряжения применяется в основном со светодиодной лентой, где диоды включены в параллель. Соответственно через них должен проходить равный ток, при неизменном напряжении. При использовании одного светодиода важно обеспечить определенную силу тока через него. Отличия есть, но оба выполняют одну и туже задачу – обеспечение стабильного питания.

Для подключения светодиодной ленты необходимы, как правило, блоки питания, выдающие 12, либо 24 В. Второй параметр – это мощность. Блок питания должен выдавать мощность не равную, а несколько большую, чем мощность подключаемой светодиодной линейки. В противном случае, яркость свечения будет недостаточна. Обычно запас по мощности рекомендуется в пределах 20-30 процентов от суммарной мощности.

При выборе драйвера нужно учесть:

  • Мощность,
  • Напряжение,
  • Предельный ток.

Кроме того, существуют и регулируемые источники питания. Их задача – регулировка яркости освещения. Но различаются принципы – регулировка напряжения, либо силы тока.

Для подключения led-линейки потребуется большая сила тока при неизменном напряжении.

Суммарная мощность будет рассчитываться по формуле P = P(led) × n, где Р – мощность, Р(led) – мощность единичного диода в линейке, n – их количество.

Сила тока через линейку будет рассчитываться по аналогичной формуле.

Если есть желание самостоятельно изготовить источник питания для светодиодов, то самый простой вариант – импульсный без гальванической развязки.

Схема простого led-драйвера без гальванической развязки.

Схема проста и надежна. Делитель основан на емкостном сопротивлении. Выпрямление производится при помощи диодного моста. Электролитический конденсатор (перед L7812) сглаживает пульсации после выпрямления. Конденсатор после L7812 сглаживает пульсации на светодиодах. На работу схемы он не влияет. L7812 – собственно сам стабилизатор. Это импортный аналог советских микросхем серии КРЕНхх. Та же самая схема включения. Характеристики несколько улучшены. Однако предельный ток составляет не более 1.2А. Это не позволит создать мощный светильник. Существуют неплохие варианты готовых источников питания.

Как выбрать драйвер для светодиодов.

От выбора драйвера зависит срок службы светодиодов. При этом светодиод достигает своих номинальных характеристик, так как получает необходимую ему мощность.

В зависимости от степени защиты драйвер можно применять либо дома, либо на улице. Внешне драйвер может быть открытым, в корпусе из перфорированного металла, либо – закрытый, размешенный в герметичной металлической коробке. Для дома достаточно негерметизированного пластикового корпуса, в котором расположен электронный блок.

Сразу стоит учесть, что ограничивающий резистор – это не самый лучший вариант. Он не избавит ни от скачков питающей сети, ни от импульсных помех. Любое изменение напряжения приведет в скачку тока. Линейные стабилизаторы также не являются достойным средством запитки светоизлучающих диодов. Его способности ограничиваются низкой эффективностью.

Выбор драйвера производится только после того, как известна суммарная мощность, схема подключения и количество светодиодов.

Сейчас много подделок и одни и те же по типоразмерам диоды могут обеспечивать разные мощности. Лучше использовать только известные марки электротехнической продукции.

На корпусе драйвера для подключения светодиодов, всегда размещена спецификация. Она включает:

  • класс защищенности от пыли и жидкости,
  • мощность,
  • номинальный стабилизированный ток,
  • рабочее входное напряжение,
  • диапазон выходного напряжения.

Достаточно популярны бескорпусные led-драйверы. Плату потребуется разместить в корпусе. Это необходимо для безопасного использования. Платы больше подходят для радиолюбителей-энтузиастов. У них входное напряжение может быть либо 12 В, либо 220 В.

Также стоит продумать о размещении драйвера. Температура и влажность влияют на надежность системы освещения.

Читайте также:
Как прозвонить (проверить) тэн стиральной машины?

Виды драйверов.

По типу их можно подразделить на:

Линейные. Они наиболее подходящие, если входное напряжение не стабильно. Отличаются улучшенной стабилизацией. Распространены мало по причине низкого КПД. Выделяет большее количество тепла, подходит для маломощной нагрузки.

Внутреннее устройство драйвера

Внешний вид и схема драйвера LED 1338G7.

Импульсные. Основаны на микросхемах ШИМ. Обладают высоким КПД. Отличаются малым нагревом и длительным сроком службы.

Микросхемы ШИМ создают значительный уровень электромагнитных помех. Людям с кардиостимуляторами не рекомендовано находится в помещениях, где применяются такие драйвера для питания светодиодов.

Драйвер, работающий с диммером. Принцип основан на использовании ШИМ-контроллера. Принцип состоит в том, что регулируется сила тока на светодиодах. Низкокачественные изделия дают эффект мерцания.

Драйвер с диммером.

LED драйвер на 220 В.

Существует немало уже готовых светодиодных драйверов промышленного производства. Естественно, они обладаю различными характеристиками. Их особенность в том, что они питаются от сети 220 В переменного напряжения и могут работать в широком диапазоне питающего напряжения. Задача, у них все та же. Выдать определенную силу тока. Многие промышленные изделия уже имеют гальваническую развязку. Гальваническая развязка предназначена для передачи электроэнергии без непосредственного соединения входной и выходной частей схемы. Это дополнительные очки в плане электробезопасности (простейшей и исторически первой гальванической развязкой считается обычный трансформатор). Обычно они имеют нестабильность не более 3 %. В подавляющем большинстве сохраняют работоспособность от 90-100 Вольт и до 260 Вольт. В магазинах очень часто их могут называть:

  • блок питания (БП),
  • источник тока,
  • адаптер питания,
  • источник питания.

Это все одно и тоже устройство. Продавцы не обязаны обладать техническим образованием.

Рекомендуемые производители светодиодных драйверов.

Многие светодиодные энергосберегающие лампы уже имеют встроенный драйвер. Тем не менее лучше не приобретать безымянную продукцию родом из Китая. Хотя временами и попадаются достойные внимания экземпляры, что в прочем явление редкое. Существует огромное количество поддельных осветителей. Многие модели не имеют гальванической развязки. Это представляет опасность для светодиодов. Такие источники тока при выходе из строя могут дать импульс и сжечь led-ленту.

Но тем не менее рынок в основном занят именно китайской продукцией. Российские поставщики известны не широко. Из них можно ответить продукцию фирм Аргос, Тритон ЛЕД, Arlight, Ирбис, Рубикон. Большинство моделей может работать и в экстремальных условиях.

Из иностранных можно смело выбрать источники тока от Helvar, Mean Well, DEUS, Moons, EVADA Electronics.

Драйверы для светодиодов: виды, назначение, подключение

LED-источники должны подключаться к электросети через специальные устройства, стабилизирующие ток – драйверы для светодиодов. Это преобразователи напряжения переменного тока 220 В в постоянный ток с необходимыми для работы световых диодов параметрами. Только при их наличии можно гарантировать стабильную работу, длительный срок эксплуатации LED-источников, заявленную яркость, защиту от короткого замыкания и перегрева. Выбор драйверов небольшой, поэтому лучше сначала приобрести преобразователь, а потом под него подбирать светодиодные источники освещения. Собрать устройство можно самостоятельно по простой схеме. О том, что такое драйвер для светодиода, какой купить и как правильно его использовать, читайте в нашем обзоре.

Что такое драйверы для светодиодов и зачем они нужны

Светодиоды – это полупроводниковые элементы. За яркость их свечения отвечает ток, а не напряжение. Чтобы они работали, нужен стабильный ток, определенного значения. При p-n переходе падает напряжение на одинаковое количество вольт для каждого элемента. Обеспечить оптимальную работу LED-источников с учетом этих параметров – задача драйвера.

Какая именно нужна мощность и насколько падает напряжение при p-n переходе, должно быть указано в паспортных данных светодиодного прибора. Диапазон параметров преобразователя должен вписываться в эти значения.

По сути, драйвер – это блок питания. Но основной выходной параметр этого устройства – стабилизированный ток. Их производят по принципу ШИМ-преобразования с использованием специальных микросхем или на базе из транзисторов. Последние называют простыми.

Преобразователь питается от обычной сети, на выходе выдает напряжение заданного диапазона, которое указывается в виде двух чисел: минимального и максимального значения. Обычно от 3 В до нескольких десятков. Например, с помощью преобразователя с напряжением на выходе 9÷21 В и мощностью 780 мА можно обеспечить работу 3÷6 светодиодных элементов, каждый из которых создает падение в сети на 3 В.

Таким образом, драйвер – это устройство, преобразующее ток из сети 220 В под заданные параметры осветительного прибора, обеспечивающее его нормальную работу и долгий срок эксплуатации.

Внешний вид LED-драйвера

Где применяют

Спрос на преобразователи растет вместе с популярностью светодиодов. LED-источники освещения – это экономичные, мощные и компактные приборы. Их применяют в разнообразных целях:

  • для фонарей уличного освещения;
  • в быту;
  • для обустройства подсветки;
  • в автомобильных и велосипедных фарах;
  • в небольших фонарях;

При подключении в сеть 220 В всегда нужен драйвер, в случае использования постоянного напряжения допустимо обойтись резистором.

Светодиодные уличные фонари – мощные и экономичные

Как работает устройство

Принцип работы LED-драйверов для светодиодов заключается в поддержании заданного тока на выходе, независимо от изменения напряжения. Ток, проходящий через сопротивления внутри прибора, стабилизируется и приобретает нужную частоту. Затем проходит через выпрямляющий диодный мост. На выходе получаем стабильный прямой ток, достаточный для работы определенного количества светодиодов.

Читайте также:
Крыши одноэтажных домов: какие виды есть, интересные проекты на фото, этапы монтажа

Основные характеристики драйверов

Ключевые параметры приборов для преобразования тока, на которые нужно опираться при выборе:

  1. Номинальная мощность устройства. Она указана в диапазоне. Максимальное значение обязательно должно быть немного больше, чем потребляемая мощность, подключаемого осветительного прибора.
  2. Напряжение на выходе. Значение должно быть больше или равно общей сумме падения напряжения на каждом элементе схемы.
  3. Номинальный ток. Должен соответствовать мощности прибора, чтобы обеспечивать достаточную яркость.

В зависимости от этих характеристик, определяют какие LED-источники можно подключить при помощи конкретного драйвера.

Вся важная информация есть на корпусе устройства

Виды преобразователей тока по типу устройства

Производятся драйверы двух типов: линейные и импульсные. У них одна функция, но сфера применения, технические особенности и стоимость различаются. Сравнение преобразователей разных типов представлено в таблице:

Как подобрать драйвер для светодиодов и рассчитать его технические параметры

Драйвер для светодиодной ленты не подойдет для мощного уличного фонаря и наоборот, поэтому необходимо как можно точнее рассчитать основные параметры устройства и учесть условия эксплуатации.

Параметр От чего зависит Как рассчитать
Расчет мощности устройства Определяется мощностью всех подключаемых светодиодов Рассчитывается по формуле P = P LED-источника × n, где P – это мощность драйвера; P LED-источника – мощность одного подключаемого элемента; n – количество элементов. Для запаса мощности 30% нужно P умножить на 1,3. Полученное значение – это максимальная мощность драйвера, необходимая для подключения осветительного прибора
Расчет напряжения на выходе Определяется падением напряжения на каждом элементе Величина зависит от цвета свечения элементов, она указывается на самом устройстве или на упаковке. Например, к драйверу 12 В можно подключить 9 зеленых или 16 красных светодиодов.
Расчет тока Зависит от мощности и яркости светодиодов Определяется параметрами, подключаемого устройства

Преобразователи выпускаются в корпусе и без. Первые выглядят более эстетичными и имеют защиту от влаги и пыли, вторые используются при скрытом монтаже и стоят дешевле. Еще одна характеристика, которую необходимо учесть – допустимая температура эксплуатации. Для линейных и импульсных преобразователей она разная.

Важно! На упаковке с устройством должны быть указаны его основные параметры и производитель.

Способы подключения преобразователей тока

Светодиоды можно подключить к устройству двумя способами: параллельно (несколькими цепочками с одинаковым количеством элементов) и последовательно (один за одним в одной цепи).

Для соединения 6 элементов, падение напряжения которых составляет 2 В, параллельно в две линии понадобится драйвер 6 В на 600 мА. А при подключении последовательно преобразователь должен быть рассчитан на 12 В и 300 мА.

Последовательное подключение лучше тем, что все светодиоды будут светиться одинаково, тогда как при параллельном соединении яркость линий может различаться. При последовательном соединении большого количества элементов потребуется драйвер с большим выходным напряжением.

Способы соединения светодиодов

Диммируемые преобразователи тока для светодиодов

Диммирование – это регулирование интенсивности света, исходящего от осветительного прибора. Диммируемые драйверы для светодиодных светильников позволяют изменять входные и выходные параметры тока. За счет этого увеличивается или уменьшается яркость свечения светодиодов. При использовании регулирования, возможно изменение цвета свечения. Если мощность меньше, то белые элементы могут стать желтыми, если больше, то синими.

Диммирование светодиодов при помощи пульта ДУ

Китайские драйверы: стоит ли экономить

Драйверы выпускаются в Китае в огромном количестве. Они отличаются низкой стоимостью, поэтому довольно востребованы. Имеют гальваническую развязку. Их технические параметры нередко завышены, поэтому при покупке дешевого устройства стоит это учесть.

Чаще всего это импульсные преобразователи, с мощностью 350÷700 мА. Далеко не всегда они имеют корпус, что даже удобно, если прибор приобретается с целью экспериментирования или обучения.

Недостатки китайской продукции:

  • в качестве основы используются простые и дешевые микросхемы;
  • устройства не имеют защиты от колебаний в сети и перегрева;
  • создают радиопомехи;
  • создают на выходе высокоуровневую пульсацию;
  • служат недолго и не имеют гарантии.

Не все китайские драйверы плохие, выпускаются и более надежные устройства, например, на базе PT4115. Их можно применять для подключения бытовых LED-источников, фонариков, лент.

Срок службы драйверов

Срок эксплуатации лед драйвера для светодиодных светильников зависит от внешних условий и изначального качества устройства. Ориентировочный срок исправной службы драйвера от 20 до 100 тыс. часов.

Повлиять на срок службы могут такие факторы:

  • перепады температурного режима;
  • высокая влажность;
  • скачки напряжения;
  • неполная загруженность устройства (если драйвер рассчитан на 100 Вт, а использует 50 Вт, напряжение возвращается обратно, от чего возникает перегрузка).

Известные производители дают гарантию на драйверы, в среднем на 30 тыс. часов. Но если устройство использовалось неправильно, то ответственность несет покупатель. Если LED-источник не включается или перестал работать, возможно, проблема в преобразователе, неправильном соединении, или неисправности самого осветительного прибора.

Как проверить драйвер для светодиодов на работоспособность смотрите в видео ниже:

Подключение светодиодов к драйверу — схемы

Как выполнить подключение светодиодов к драйверам? Данной статьей мы попытаемся рассказать популярно, доходчиво и просто, чтобы “дошло” до каждого.

В этой статье мы поднимем еще одну «животрепещущую» тему, такую как: как подключение светодиодов к драйверу. Казалось бы, спросите Вы: «Что сложного?». Однако, тут тоже есть свои нюансы.

В статье рассмотрим подключение последовательное, параллельное и параллельно-последовательное соединение светодиодов к драйверу. Увидим нюансы, плюсы и возможные минусы.

Читайте также:
Мигает энергосберегающая лампа: причины, борьба с миганием

В принципе, если разобраться, то подключение достаточно простое, единственное, стоит не много разобраться с исходными данными. Выбрать драйвер, согласно будущей схеме подключения светодиодов.

Мы для примера будем использовать 9 светодиодов с падением напряжения по 2 В каждый и током потребления — 300 мА.

Параллельная схема — подключение светодиодов к драйверу

Данная схема имеет свои особенности, в частности, при такой схеме подключения напряжение в каждой цепочке будет складываться из количества диодов и падения напряжения на каждом из них, а токи каждой цепи будут складываться. Т.е. мы получаем, что для такого подключения нам потребуется драйвер с напряжением не меньше 6 В и не менее 900 мА.

Т.е. мы производим вычисления по принципу последовательного соединения светодиодов, когда напряжение в цепочке складывается а ток остается неизменным. Но так как у нас три цепочки, то соответственно складываем токи.

Nобщ — 9 LED; Nцепи — 3 LED; Iled — 300 mA; Uled — 2В;

соединение в три цепочки по три диода в каждой, каждая цепочка соединяется параллельно.

Uдр = Uled*Nцепи = 2*3=6В

По сравнению с последовательным соединением одинакового количества светодиодов к драйверу нам потребуется драйвер с втрое меньшим напряжением, но втрое увеличенным током.

Однако, т.к. ток распределяется неравномерно, соответственно цепочки будут светиться не равномерно. Какая-то сильнее, какая-то слабее.

Последовательная схема подключения светодиодов к драйверу

Данное подключение светодиодов к драйверу наиболее предпочтительно, ввиду того, что все диоды будут иметь одинаковое излучение. Однако, по сравнению с предыдущей схемой нам понадобится драйвер с увеличенным напряжением. Вообще, последовательное соединение тем и плохо, чем больше светодиодов тем больше требуется выходное напряжение драйвера.

Nобщ — 9 LED; Nцепи — 9 LED; Iled — 300 mA; Uled — 2В;

Uдр = Uled*Nцепи = 2*9=18 В

Iдр = Iled = 300 мА

Если заниматься подбором драйвера нет желания — можете воспользоваться нашим калькулятором для расчета и подбора драйвера.

Последовательно-параллельная схема подключения светодиодов к драйверу

Для данной схемы потребуется драйвер с аналогичными характеристиками, такими же как и при параллельном подключении светодиодов к драйверу. Однако, в отличии от характеристики свечения светодиодов данная схема позволяет диодам излучать свет с постоянной интенсивностью. Единственным минусом стоит отметить то, что в момент подачи питания, так скажем «пусковой ток» может превышать номинальный в два раза.

Светодиоды способны выдерживать кратковременные токовые скачки, но все же они не желательны. На схеме Вы видите три параллельных светодиода, однако, практикуется соединение не более двух.

Что касаемо силового подключения — нет разницы как подключать 220 В, основная задача — правильно подключать «выходные» проводники и не перепутать полярность.

Современные драйвера для светодиодов стали намного лучше и продуктивнее по сравнению с теми, что выпускались на заре становления светодиодного освещения. Теперь их можно купить практически везде и за относительно малые деньги. В этом магазине Вы можете купить самые дешевые и качественные драйверы за смешные деньги.

Зачем нужен драйвер для светодиода и как подобрать

Широкое распространение светодиодов повлекло за собой массовое производство блоков питания для них. Такие блоки называются драйверами. Основной их особенностью является то, что они способны стабильно поддерживать на выходе заданный ток. Другими словами, драйвер для светодиодов (LED) – это источник тока для их питания.

  1. Назначение
  2. Применение
  3. Принцип работы
  4. Основные характеристики
  5. Как подобрать драйвер для светодиодов, способы подключения
  6. Виды
  7. Светодиодный драйвер на 220 В
  8. Китайские драйверы
  9. Что купить?
  10. Срок службы
  11. Схемы драйверов (микросхемы) для светодиодов
  12. Заключение

Назначение

Поскольку светодиод — это полупроводниковые элементы, ключевой характеристикой, определяющей яркость их свечения, является не напряжение, а ток. Чтобы они гарантированно отработали заявленное количество часов, необходим драйвер, — он стабилизирует ток, протекающий через цепь светодиодов.

Возможно использование маломощных светоизлучающих диодов и без драйвера, в этом случае его роль выполняет резистор.

Применение

Драйверы применяются как при питании светодиода от сети 220В, так и от источников постоянного напряжения 9-36 В. Первые используются при освещении помещений светодиодными лампами и лентами, вторые чаще встречаются в автомобилях, велосипедных фарах, переносных фонарях и т.д.

Принцип работы

Как уже было сказано, драйвер – это источник тока. Его отличия от источника напряжения проиллюстрированы ниже.

Источник напряжения создает на своем выходе некоторое напряжение, в идеале не зависящее от нагрузки.

Например, если подключить к источнику напряжением 12 В резистор 40 Ом, через него пойдет ток 300 мА.

Если подключить параллельно два резистора, суммарный ток составит уже 600 мА при том же напряжении.

Драйвер же поддерживает на своем выходе заданный ток. Напряжение при этом может изменяться.

Подключим так же резистор 40 Ом к драйверу 300 мА.

Драйвер создаст на резисторе падение напряжения 12 В.

Если подключить параллельно два резистора, ток по-прежнему будет 300 мА, а напряжение упадет до 6 В:

Таким образом, идеальный драйвер способен обеспечить нагрузке номинальный ток вне зависимости от падения напряжения. То есть светодиод с падением напряжения 2 В и током 300 мА будет гореть так же ярко, как и светодиод напряжением 3 В и током 300 мА.

Читайте также:
Какую незамерзающую жидкость выбрать для системы отопления?

Основные характеристики

При подборе нужно учитывать три основных параметра: выходное напряжение, ток и потребляемая нагрузкой мощность.

Напряжение на выходе драйвера зависит от нескольких факторов:

  • падение напряжения на светодиоде;
  • количество светодиодов;
  • способ подключения.

Ток на выходе драйвера определяется характеристиками светодиодов и зависит от следующих параметров:

  • мощность светодиодов;
  • яркость.

Мощность светодиодов влияет на потребляемый ими ток, который может варьироваться в зависимости от требуемой яркости. Драйвер должен обеспечить им этот ток.

Мощность нагрузки зависит от:

  • мощности каждого светодиода;
  • их количества;
  • цвета.

В общем случае потребляемую мощность можно рассчитать как

где Pled — мощность светодиода,

N — количество подключаемых светодиодов.

Максимальная мощность драйвера не должна быть меньше .

Стоит учесть, что для стабильной работы драйвера и предотвращения выхода его из строя следует обеспечить запас по мощности хотя бы 20-30%. То есть должно выполняться следующее соотношение:

где Pmax — максимальная мощность драйвера.

Кроме мощности и количества светодиодов, мощность нагрузки зависит еще от их цвета. Светодиоды разных цветов имеют разное падение напряжения при одинаковом токе. Например, красный светодиод CREE XP-E обладает падением напряжения 1.9-2.4 В при токе 350 мА. Средняя потребляемая им мощность таким образом составляет около 750 мВт.

У XP-E зеленого цвета падение 3.3-3.9 В при том же токе, и его средняя мощность составит уже около 1,25 Вт. То есть драйвером, рассчитанным на 10 ватт, можно питать либо 12-13 красных светодиодов, либо 7-8 зеленых.

Как подобрать драйвер для светодиодов, способы подключения

Допустим, имеется 6 светодиодов с падением напряжения 2 В и током 300 мА. Подключить их можно различными способами, и в каждом случае потребуется драйвер с определенными параметрами:

  1. Последовательно. При таком способе подключения потребуется драйвер напряжением 12 В и током 300 мА. Преимущество такого способа в том, что через всю цепь идет один и тот же ток, и светодиоды горят с одинаковой яркостью. Недостаток заключается в том, что для подключения большого числа светодиодов потребуется драйвер с очень большим напряжением.
  2. Параллельно. Здесь уже будет достаточно драйвера на 6 В, но потребляемый ток будет примерно в 2 раза больше, чем при последовательном соединении. Недостаток: токи, текущие в каждой цепи, немного различаются из-за разброса параметров светодиодов, поэтому одна цепь будет светить несколько ярче другой.
  3. Последовательно по два. Тут потребуется такой же драйвер, как и во втором случае. Яркость свечения будет уже более равномерная, но есть один существенный недостаток: при включении питания в каждой паре светодиодов из-за разброса характеристик один может открыться раньше другого, и через него пойдет ток, в 2 раза превышающий номинальный. Большинство светодиодов рассчитаны на такие кратковременные броски тока, но все-таки этот способ наименее предпочтителен.

Соединять таким образом параллельно 3 и более светодиодов недопустимо, так как при этом через них может пойти слишком большой ток, в результате чего они быстро выйдут из строя.

Обратите внимание, что во всех случаях мощность драйвера составляет 3.6 Вт и не зависит от способа подключения нагрузки.

Таким образом, целесообразнее выбирать драйвер для светодиодов уже на этапе закупки последних, предварительно определив схему подключения. Если же сначала приобрести сами светодиоды, а потом подбирать к ним драйвер, это может оказаться нелегкой задачей, поскольку вероятность того, что Вы найдете именно тот источник питания, который сможет обеспечить работу именно этого количества светодиодов, включенных по конкретной схеме, невелика.

В общем случае драйверы для светодиодов можно разделить на две категории: линейные и импульсные.

  1. У линейного выходом служит генератор тока. Он обеспечивает стабилизацию выходного тока при нестабильном входном напряжении; причем подстройка происходит плавно, не создавая высокочастотных электромагнитных помех. Они просты и дешевы, но невысокий КПД (менее 80%) ограничивает сферу их применения маломощными светодиодами и лентами.
  2. Импульсные представляют собой устройства, создающие на выходе серию высокочастотных импульсов тока.

Импульсные работают по принципу широтно-импульсной модуляции (ШИМ), то есть среднее значение выходного тока определяется отношением ширины импульсов к периоду их следования (эта величина называется коэффициентом заполнения).

На диаграмме выше показан принцип работы ШИМ-драйвера: частота импульсов остается постоянной, но изменяется коэффициент заполнения от 10% до 80%. Это ведет к изменению среднего значения тока Icp на выходе.

Импульсные драйверы получили широкое распространение благодаря компактности и высокому КПД (около 95%). Основным недостатком является больший по сравнению с линейными уровень электромагнитных помех.

Светодиодный драйвер на 220 В

Для включения в сеть 220 В выпускаются как линейные, так и импульсные. Существуют драйверы с гальванической развязкой от сети и без нее. Основными преимуществами первых являются высокий КПД, надежность и безопасность.

Без гальванической развязки обычно дешевле, но менее надежны и требуют осторожности при подключении, поскольку есть вероятность поражения током.

Китайские драйверы

Востребованность драйверов для светодиодов способствует их массовому производству в Китае. Эти устройства представляют собой импульсные источники тока, обычно на 350-700 мА, часто не имеющие корпуса.

Китайский драйвер для светодиода 3w

Основные их достоинства – низкая цена и наличие гальванической развязки. Недостатки следующие:

  • низкая надежность из-за использования дешевых схемных решений;
  • отсутствие защиты от перегрева и колебаний в сети;
  • высокий уровень радиопомех;
  • высокий уровень пульсаций на выходе;
  • недолговечность.
Читайте также:
Как проверить тягу в дымоходе газового котла: инструкция по проверке и устранению проблем с разрежением в топочной камере напольных и настенных котлоагрегатов

Ввиду большого количества недостатков эти драйверы пользуются маленьким спросом, но, сегодня в Китае производится огромное количество продукции, многие известные бренды перенесли свое производство в эту страну. В связи с этим, теперь в Китае можно купить и качественные драйверы для светодиодов, например на AliExpress, главное знать, что брать.

Что купить?

Мы проанализировали большое количество отзывов с форумов и самой площадки AliExpress и подготовили для вас свою подборку драйверов, которые подойдут для решения многих задач:

  1. Универсальный драйвер 5-24 Вольт, 2-4 Ампера, маленькие габариты. Входящее напряжение 85-260В. Есть 3 варианта компактного исполнения 5В, 2А; 12В,2А; 24В, 4А и еще один вариант 3 в 1. Цена очень приятная, от 4 до 9 долларов. Мы нашли самое выгодное предложение, продавец проверенный, отправляет быстро и качественно упаковывает. Только положительны отзывы. Посмотреть товар на AliExpress.
  2. Драйвер для светодиодных лампочек. Этот вид преобразователей в основном используется в лампочках и маленьких светильниках. Маленькие габариты и низкая цена. Входное напряжение 200-240В. Исходящее постоянное напряжение (DC) зависит от нагруженной мощности и может составлять 24-160 Вольт, соответственно мощность при этом составит 8-50 Вт. Мы также подобрали самое выгодное предложение с большим количеством заказов и положительных отзывов. Посмотреть товар на AliExpress.
  3. Еще один для лампочек. Этот товар такой же как и выше, но у этого продавца больше вариантов выбора по питанию и напряжению, возможно тут вы подберете то, что нужно именно вам. Посмотреть товар на AliExpress.
  4. Драйвер для светодиодных светильников и лент. Данный тип драйверов позволяет подключать светодиодные ленты и светильники. Входящее напряжение 110-260 Вольт. Максимальная нагрузка 300 Вт. Выходное напряжение 12 и 24 Вольта. Посмотреть товар на AliExpress.

Срок службы

Обычно срок службы драйвера меньше, чем у оптической части – производители дают гарантию на 30000 часов работы. Это связано с такими факторами, как:

  • нестабильность сетевого напряжения;
  • перепады температур;
  • уровень влажности;
  • загруженность драйвера.

Самым слабым звеном светодиодного драйвера являются сглаживающие конденсаторы, которые имеют тенденцию к испарению электролита, особенно в условиях повышенной влажности и нестабильного питающего напряжения. В результате уровень пульсаций на выходе драйвера повышается, что негативно сказывается на работе светодиодов.

Также на срок службы влияет неполная загруженность драйвера. То есть если он, рассчитан на 150 Вт, а работает на нагрузку 70 Вт, половина его мощности возвращается в сеть, вызывая ее перегрузку. Это провоцирует частые сбои питания. Рекомендуем почитать про срок службы светодиодных ламп.

Схемы драйверов (микросхемы) для светодиодов

Многие производители выпускают специализированные микросхемы драйверов. Рассмотрим некоторые из них.

ON Semiconductor UC3845 – импульсный драйвер с выходным током до 1А. Схема драйвера для светодиода 10w на этой микросхеме приведена ниже.

Supertex HV9910 – очень распространенная микросхема импульсного драйвера. Ток на выходе не превышает 10 мА, не имеет гальванической развязки.

Простой драйвер тока на этой микросхеме представлен ниже.

Texas Instruments UCC28810. Сетевой импульсный драйвер, имеет возможность организовать гальваническую развязку. Выходной ток до 750 мА.

Еще одна микросхема этой фирмы, — драйвер для питания мощных светодиодов LM3404HV — описывается в этом видео:

Устройство работает по принципу резонансного преобразователя типа Buck Converter, то есть функция поддержания требуемого тока здесь частично возложена на резонансную цепь в виде катушки L1 и диода Шоттки D1 (типовая схема приведена ниже). Также имеется возможность задания частоты коммутации подбором резистора RON.

Maxim MAX16800 – линейная микросхема, работает при малых напряжениях, поэтому на ней можно построить драйвер 12 вольт. Выходной ток – до 350 мА, поэтому может использоваться как драйвер питания для мощного светодиода, фонарика, и т.д. Есть возможность диммирования. Типовая схема и структура представлены ниже.

Заключение

Светодиоды гораздо более требовательны к источнику питания, чем другие источники света. Например, превышение тока на 20% для люминесцентной лампы не повлечет за собой серьезного ухудшения характеристик, для светодиодов же срок службы сократится в несколько раз. Поэтому выбирать драйвер для светодиодов следует особенно тщательно.

Полное руководство по изучению и выбору светодиодного драйвера

Использование светодиодного драйвера имеет решающее значение для предотвращения повреждения вашего светодиода (-ов). Прямое напряжение светодиодов изменяется при изменении их температуры. Повышение температуры уменьшает прямое напряжение, в результате чего светодиод потребляет больше тока. Диод будет продолжать нагреваться и потреблять еще больший тока, пока не сгорит. Этот процесс называется «тепловой пробой». Использование драйвера светодиода постоянного тока предотвращает пробой, компенсируя изменения прямого напряжения, подавая стабилизированный ток через светодиоды (индикаторы).

Входное напряжение.

Существуют светодиодные драйверы с входным напряжением постоянного тока (DC) и переменного тока (AC). Вход AC как правило может работать при напряжении сетевого питания от 110 В до 277 В переменного тока, в то время как драйверы с входом DC чаще всего при напряжении от 3 В до 32 В постоянного тока. В большинстве случаев рекомендуется использовать драйвер с низким напряжением постоянного тока, так как они очень эффективны, надежны и имеюд вход затемнения (диммирования). Даже если в вашей системе используется высоковольтное сетевое питание, лучше использовать низковольтные драйверы с дополнительным импульсным источником питания, преобразующим высокое сетевое напряжение в нужное нашим низковольтным драйверам.

Читайте также:
Как почистить перчатки из замши дома

Выходной ток.

Все рассматриваемые светодиодные драйверы обеспечивают в нагрузке стабилизированный постоянный ток. Но перед выбором нужно изучить спецификации светодиодов и выбрать правильный уровень токового выхода для соответствующего светодиода. Линейка номинальных выходные токов драйверов: 350 мА, 500 мА, 700 мА, 1000 мА, 1400 мА и 2100 мА. Это позволяет легко выбрать драйвер с безопасным выходом для выбранного светодиода или линейки светодиодов.

Драйверы с регулировкой яркости для светодиодов. Диммируемые драйверы.

Для управления наиболее распространенными диммируемыми драйверами AC и DC используют постоянное напряжение от 0 до 10 В. Драйверы постоянного тока (DC), как правило, обеспечивают более линейный закон затемнения, создают меньше проблем с мерцанием и предоставляют более широкий спектр опций.

Полное руководство по изучению и выбору светодиодного драйвера.

При выборе подходящего светодиодного драйвера вам сначала нужно знать, что вы ищете. Всегда, как при любом выборе, есть много соображений и вопросов, например:

Сколько светодиодов я могу запустить?

И, каким электропитанием я располагаю?

Чтобы облегчить процесс выбора драйверов светодиодов, мы опубликовали подробное руководство по изучению светодиодных драйверов и выбору наиболее подходящего.

Нужно ли использовать светодиодный драйвер?

Если ваш светодиодный проект использует любой светодиод, более мощный, чем простой светодиодный индикатор, тогда дается какой-то светодиодный драйвер! Далее мы опубликовали статью, в которой подчеркивается, почему светодиодный драйвер необходим для питания светодиодов

Что делает светодиодный драйвер?

Светодиодные драйверы отличаются от стандартных источников питания тем, что они обеспечивают постоянный ток в цепи питания светодиодов вместо постоянного напряжения на светодиодах. Выходное напряжение от драйвера постоянного тока будет меняться в зависимости от требуемого выходного тока. Стабилизация тока необходима в связи с тем, что прямое напряжение на светодиодах изменяется от температуры. Без источника постоянного тока вероятность теплового пробоя и общего отказа может стать вероятной.

Как подключить светодиодный драйвер?

Самый эффективный способ питания светодиодного драйвера – источник постоянного тока постоянного тока (DC). Импульсный источник питания или батарейный источник питания идеальны, однако, если ваша система не имеет таких источников ваше, мы также предлагаем стабилизированные драйверы постоянного тока постоянного тока с питанием от сети переменного тока.

Пример подбора соответствующих светодиодов и светодиодных драйверов.

Вы хотите включить 3 светодиода серии Cree XP-G2 с рабочим током 1400 мА от источника постоянного низкого напряжения. Драйвер LUXdrive A009-D-V-14000 BuckBlock в диапазоне входного постоянного напряжения от 10 В до 32 В тока обеспечивает в цепи светодиодной нагрузки 1400 мА. Для обеспечения достаточной мощности входное напряжение драйвера должно быть больше, чем падение прямого напряжения на трех последовательно включенных светодиодах. Светодиод Cree XP-G2 на номинальный ток потребления 1400 мА имеет прямое напряжение 3,1 В. Суммарное напряжение на цепочке светодиодов 3,1 В х 3 = 9,3 В. Исходя из этой величины выберем 12-ти вольтовый источник питания постоянного тока. Окончательная проверка: нужно убедиться в том, что ваш источник питания может отдавать в нагрузку необходимою мощность . Уравнение: Watts = Amps х Vdc. В этом случае 1.4 A умножить на 9.3 Vdc = 13,02 Вт.

Как выбрать правильный светодиодный драйвер.

Светодиодные драйверы могут быть самой сложной для выбора и неоднозначной частью светодиодной технологии. Существует так много разных типов и вариаций, что иногда может показаться, что выбрать оптимальный просто невозможно. Вот почему появилась необходимость рассказать об этом в понятной и достаточно краткой форме.

Что вы можете узнать о светодиодом драйвере?

Светодиодный драйвер – это электрическое устройство, которое управляет питанием светодиода или строки светодиодов. Использование одного из этих драйверов очень важно для предотвращения повреждения ваших светодиодов, поскольку прямое напряжение (Uf) мощного светодиода изменяется с температурой. Прямое напряжение – это количество вольт, которое должно быть установлено на светодиоде чтобы он излучал. По мере повышения температуры прямое напряжение светодиода уменьшается, в результате чего через светодиод пойдет больший ток. А это приведет к продолжению нагрева, дальнейшему увеличению тока и, в конечном итоге к тепловому пробою. Светодиодный драйвер представляет собой автономный источник питания в режиме стабилизации тока, который имеет выходы, которые соответствуют электрическим характеристикам светодиода (-ов). Это помогает избежать теплового пробоя светодиодов, поскольку драйвер постоянно компенсирует изменения в прямом напряжении для стабилизации рабочего тока светодиодов.

Что нужно учитывать перед выбором драйвера светодиода?

Какие типы светодиодов используются и сколько? Выясните прямое напряжение, рекомендуемый ток и прочие параметры светодиодов.

Нужен ли мне драйвер стабилизирующий ток или драйвер стабилизирующий напряжение?

Здесь мы выбираем параметр, который должен стабилизироваться, постоянный ток или постоянное напряжение.

Какой тип источника питания вы будет использоваться? DC -источник постоянного тока, AC- сеть переменного тока, аккумуляторные батареи и т. д.

Выбрали общее питание от сети переменного тока AC? Посмотрите, не подойдет ли вам вариант первичного преобразования AC/DC с последующей подачей DC в цепь питания драйверов !

Каковы ограничения пространства? Сколько пространства вы имеете для размещения драйверов , светодиодов, кабелей, радиаторов.

Не так много напряжения для работы? Оцените, хватает ли вам питания для приложения.

Каковы основные цели приложения? Размер, стоимость, эффективность, производительность и т. д.

Любые специальные функции? Диммирование, пульсация яркости, микропроцессорное управление и т. д.

Прежде всего Вы должны знать …

Читайте также:
Межпанельные швы - как и чем герметизировать

Входное напряжение.

Существуют светодиодные драйверы с входным напряжением постоянного тока (DC) и переменного тока (AC). Вход AC как правило может работать при напряжении сетевого питания от 110 В до 277 В переменного тока, в то время как драйверы с входом DC чаще всего при напряжении от 3 В до 32 В постоянного тока. В большинстве случаев рекомендуется использовать драйвер с низким напряжением постоянного тока, так как они очень эффективны, надежны и имеюд вход затемнения (диммирования). Даже если в вашей системе используется высоковольтное сетевое питание, лучше использовать низковольтные драйверы с дополнительным импульсным источником питания, преобразующим высокое сетевое напряжение в нужное нашим низковольтным драйверам.

Для небольших приложений есть больше возможностей регулировки яркости и вывода по сравнению с драйверами переменного тока высокого напряжения, поэтому у вас есть больше возможностей для работы в вашем приложении. Однако, если у вас есть большой общий проект освещения для жилого или коммерческого освещения, вы должны увидеть, как драйверы переменного тока могут быть лучше для этого типа работы.

Далее Вы должны понимать требования и возможности по мощности.

Во-вторых, вам нужно знать выходной ток драйвера, от которого вы хотите питать светодиод. Ток драйвера должен соответствовать номинальному рабочему току светодиода. В противном случае будет перегрев радиатора и светодиода или, недоиспользование мощностных возможностей светодиода И конечно, если вы хотите управлять яркостью светодиода, необходимо выбрать драйвер с возможностью диммирования.

Диммирование низковольтных драйверов постоянного тока.

Низковольтные драйверы с питанием от источника постоянного тока можно легко диммировать несколькими способами. Простейшим решением для регулировки яркости является использование потенциометра. Это дает полный диапазон регулирования яркости от 0 до 100%.

Номинальное сопротивление потенциометра 20 Ком. Обычно такое значение рекомендуется, когда в вашей цепи есть только один драйвер, но если есть несколько драйверов, которые диммируются от одного потенциометра, значение потенциометра можно найти из соотношения – KΩ / N – где KΩ – значение вашего потенциометра, а N – количество используемых драйверов. Просто подключите диммирующий заземляющий провод к центральному контакту и диммирующему проводу в одну сторону или другую (выбор стороны просто определяет в какую сторону вы поворачиваете ручку для затемнения).

Ваш второй вариант для регулировки яркости – использовать настенный диммер 0-10 В. Для примера можно выбрать A019 Low Voltage Dimming Control. Это лучший способ диммирования для случая управления несколькими драйверами. Это возможно, поскольку диммер 0-10 В может работать с несколькими драйверами одновременно. Просто подсоедините провода управления яркостью прямо на входы диммирования драйверов, и удачи Вам.

Диммирование высоковольтных светодиодных драйверов.

Для высоковольтных светодиодных драйверов переменного тока есть несколько вариантов регулировки яркости. Многие драйверы переменного тока работают с 0-10 В диммированием, по принципу, описанному выше. Мы также используем светодиодные драйверы Mean Well и Phihong, использующие симисторы (TRIAC). И эти драйверы могут работать с различными ведущими и ведомыми диммерами. Это полезно, так как позволяет светодиодам работать с очень популярными системами диммирования в жилых помещениях, такими как Lutron и Leviton.

Сколько светодиодов вы можете запустить с драйвером?

Максимальное количество светодиодов, которые вы можете запускать от одного драйвера, определяется путем деления максимального выходного напряжения драйвера на прямое напряжение вашего светодиода. При использовании драйверов LuxDrive вы определяете максимальное выходное напряжение путем вычитания 2 вольт из входного напряжения. Это необходимо, потому что драйверам требуется дополнительные 2 вольта для питания внутренней схемы. Например, используя Wired 1000mA BuckPuck драйвер с 24-вольтным питанием, вы будете иметь максимальное выходное напряжение 22 вольта.

Какое нужно электропитание? Эти рассуждения, основанные на параметрах драйверов, приводит нас к тому, на основании каких расчетов определить величину входного напряжения для светодиодных драйверов. Убедитесь, что вы знаете минимальное и максимальное входное напряжение для ваших светодиодных драйверов. Например, выберем драйвер BuckPuck на 1000mA. Диапазон его входного напряжения от 7 до 32 В постоянного тока. Определить оптимальное значение входного напряжения можно по простой формуле: Vo+ (Vf x LEDn) = Vin

Где: Vo = минимальное падение напряжение на драйвере ( 2, если вы используете драйвер DC LuxDrive или 4, если используете драйвер AC LuxDrive);

Vf = Прямое напряжение светодиодов, которые вы хотите включить;

LEDn = количество светодиодов, которые вы хотите включить;

Vin = входное напряжение для драйвера.

Технические характеристики продукта на странице LED Cree XPG2

Например, если вам требуется питание 6 светодиодов Cree СXPG2 от источника питания постоянного тока, и вы используете драйвер BuckPuck, тогда Vin должен быть не менее 20VDC на основе следующего расчета.

Это значение определяет минимальное входное напряжение, которое вам необходимо подать на вход драйвера. Нет никакого вреда в использовании более высокого напряжения вплоть до максимального значения входного напряжения драйвера. И поскольку мы не имеем в номенклатуре источника питания 20VDC, применим источник питания 24VDC для запуска этих светодиодов.

Расчет для мощности светодиода:

P (мощность) = Vf x Приводной ток (в амперах)

Используя 6 светодиодов Cree XPG2, мы можем вычислить мощность в ваттах.

Читайте также:
Как сделать будку для немецкой овчарки — правила обмера животного, составление чертежа и технология изготовления (+ 1 видео)

3,0 В x 1A = 3 Вт на светодиод

Общая мощность для схемы = 6 x 3 = 18 Вт

Запас мощности. При расчете соответствующей мощности электропитания для вашего проекта важно предусмотреть 20% -ный запас для расчета мощности. Добавление 20% мощности предотвратит перегрузку электропитания. Перегрузка источника питания может привести к тому, что светодиоды начнут мерцать или может привести к преждевременному отказу. Просто умножим общую мощность на 1,2.

Поэтому для нашего вышеприведенного примера мы хотели бы получить как минимум 21,6 Вт (18 х 1,2 = 21,6). Наш источник питания 24 В постоянного тока 1.7А был бы более чем достаточным для этого проекта, так как вы можете найти мощность, умножив ваш 24VDC на 1,7A, который достигает 40,8 Вт, поэтому мы почти вдвое больше требуемой мощности.

Что делать, если недостаточно напряжения?

В этом случае можно использовать светодиодный драйвер – бустер (FlexBlock).

Светодиодные драйверы FlexBlock – это повышающие драйверы, что означает, что они могут выдавать на выход более высокое напряжение, чем напряжение по на вход. Это позволяет вам включать больше светодиодов, соединенных последовательно, с одним светодиодным драйвером. Это чрезвычайно полезно в приложениях, где ваше входное напряжение ограничено, но вам нужно получить больше мощности от светодиодов. Конечно, потребляемый ток входной цепи станет выше, но все светодиоды будут работать в своем оптимальном режиме.

Как и в случае с драйвером BuckPuck, максимальное количество последовательно включенных светодиодов, которые вы можете использовать с одним драйвером , определяется делением максимального выходного напряжения драйвера на прямое напряжение выбранных светодиодов.

FlexBlock может быть подключен в двух разных конфигурациях.

В режиме Buck-Boost (это стандартное подключение) FlexBlock может обслуживать светодиодные цепочки, которые требуют напряжение выше, ниже или равного напряжению питания. Максимальное выходное напряжение драйвера в этом режиме можно определить с помощью формулы: 48VDC — Vin. Поэтому, при использовании источника питания 12 В постоянного тока и светодиодов Cree XPG2, можно определить сколько светодиодов можно включить с помощью FlexBlock с выходным током 700 мА? Максимальное выходное напряжение составляет 36 В постоянного тока (48-12), а прямое напряжение Cree XPG2, работающего на 700 мА, составляет 2,9, поэтому, деля 36 В постоянного тока, мы видим, что этот драйвер может подавать 12 светодиодов.

В режиме Boost-Only драйвер FlexBlock может выводить до 48 В постоянного тока при питании от 10 В постоянного тока. Поэтому, если вы находитесь в режиме Boost-Only, вы можете включить до 16 светодиодов (48 / 2.9).

Резюме.

На основании этой статьи Вы можете сформулировать требования к системе освещения и подобрать необходимое оборудование для реализации задуманного. А наши специалисты всегда смогут Вам помочь.

Описание драйвера для питания светодиодов

Светодиоды представляют собой универсальные и экономичные источники освещения, которые вошли в каждый дом. С помощью современных светодиодных ламп организовывают освещение квартир, домов, офисов, общественных зданий и улиц. Важнейшим элементом любого прибора, работающего на светодиодах является драйвер. Компонент имеет ряд особенностей, которые важно учитывать при использовании электроприборов.

Светодиодный драйвер — что это такое

Прямой перевод слова «драйвер» означает «водитель». Таким образом, драйвер любой светодиодной лампы выполняет функцию управления подающимся на устройство напряжением и регулирует параметры освещения.

Светодиоды это электрические приборы, способные излучать свет в некотором спектре. Чтобы прибор работал правильно, необходимо подавать на него исключительно постоянное напряжение с минимальными пульсациями. Условие особенно актуально для мощных светодиодов. Даже минимальные перепады напряжения способны вывести прибор из строя. Незначительное снижение входного напряжения мгновенно отразится на параметрах светоотдачи. Превышение установленного значения приводит к перегреву кристалла и его перегоранию без возможности восстановления.

Драйвер осуществляет функцию стабилизатора входного напряжения. Именно этот компонент отвечает за поддержание необходимых значений тока и правильную работу источника освещения. Использование качественных драйверов гарантирует долгое и безопасное использование прибора.

Как работает драйвер

LED-драйвер – источник постоянного тока, который создает на выходе напряжение. В идеале оно не должно зависеть от подаваемой на драйвер нагрузки. Сеть переменного тока характеризуется нестабильностью и нередко в ней наблюдаются значительные перепады параметров. Стабилизатор должен сглаживать перепады и предотвращать их негативное влияние.

К примеру, подключая к источнику напряжения 12 В резистор на 40 Ом можно получить стабильный показатель тока в 300 мА.

Если подключить параллельно два одинаковых резистора на 40 Ом, ток на выходе будет составлять уже 600 мА. Такая схема достаточно проста и характерна для самых дешевых электрических приборов. Она не способна автоматически поддерживать нужную силу тока и противостоять пульсациям напряжения в полной мере.

Драйверы питания для светодиодов делят на две большие группы: линейные и импульсные, по принципу работы.

Импульсная стабилизация

Импульсная стабилизация отличается надежностью и эффективностью при работе с диодами практически любой мощности.

Регулирующим элементом является кнопка, схема дополнена накопительным конденсатором. После подачи напряжения нажимается кнопка, заставляющая конденсатор накапливать энергию. Затем кнопка размыкается, а постоянное напряжение от конденсатора поступает на осветительное оборудование. Как только конденсатор разрядится, процедура повторяется.

Рост напряжения позволяет сократить время зарядки конденсатора. Подача напряжения запускается специальным транзистором или тиристором.

Все происходит автоматически со скоростью около сотен тысяч замыканий в секунду. КПД в данном случае нередко достигает впечатляющего показателя в 95%. Схема эффективна даже при использовании высокомощных светодиодов, поскольку потери энергии в процессе работы оказываются незначительными.

Читайте также:
Мебель для гаража: как изготовить своими руками

Линейный стабилизатор

Линейный принцип регулировки тока иной. Простейшая схема подобной цепи представлена на рисунке ниже.

В цепь установлен резистор, ограничивающий ток. Если меняется напряжение питания, смена сопротивления резистора позволит снова выставить нужное значение тока. Линейный стабилизатор автоматически следит за проходящим через светодиод током и при необходимости регулирует его при помощи переключателя резистора. Процесс протекает крайне быстро и помогает оперативно реагировать на малейшие колебания сети.

Подобная схема проста и эффективна, однако имеется недостаток – бесполезное рассеивание мощности проходящего через регулирующий элемент тока. По этой причине вариант оптимален при использовании с небольшим рабочим током. Использование высокомощных диодов может привести к тому, что элемент регулировки будет потреблять больше энергии, чем сама лампа.

Как подобрать

Чтобы подобрать светодиодный драйвер, необходимо рассматривать комплексно характеристики прибора:

  • напряжение на входе и выходе;
  • выходной ток;
  • мощность;
  • уровень защиты от вредных воздействий.

Для начала определяют источник питания. Используются стандартная сеть с переменным напряжением, аккумулятор, блок питания и многое другое. Главное, чтобы входное напряжение было в указанном в паспорте устройства диапазоне. Ток также должен соответствовать входной сети и подсоединенной нагрузке.

Производители выпускают устройства в корпусах или без них. Корпуса эффективно защищают от влаги, пыли и негативных воздействий окружающей среды. Однако для встраивания прибора непосредственно в лампу корпус не обязательный компонент.

Как рассчитать

Для правильной организации электрической цепи важно рассчитать выходные параметры. На основе полученных данных реализуется подбор конкретной модели.

Тематическое видео: Как подобрать драйвер для светодиодного светильника.

Расчет начинается с рассмотрения светодиодов с учетом их напряжения и тока. Характеристики можно увидеть в документах. К примеру, используются диоды напряжением 3,3 В с током 300 мА. Необходимо создать светильник, в котором три светодиода расположены один за другим последовательно. Рассчитывается падение напряжение в цепи: 3,3 * 3 = 9,9 В. Ток в данном случае остается постоянным. Значит пользователю потребуется драйвер с выходным напряжением 9,9 В и силой тока 300 мА.

Конкретно такой блок найти не удастся, поскольку современные приборы рассчитаны на использование в некотором диапазоне. Ток прибора может быть немного меньше, лампа будет менее яркой. Превышать ток запрещено, поскольку такой подход способен вывести прибор из строя.

Теперь требуется определить мощность устройства. Хорошо, если она будет превышать нужный показатель на 10-20%. Расчет мощности осуществляется по формуле, умножая рабочее напряжение на ток: 9,9 * 0,3 = 2,97 Вт.

Как подключить к светодиодам

Подключить драйвер к светодиодам можно даже без специальных навыков. Контакты и разъемы обозначены маркировкой на корпусе.

Маркировкой INPUT помечены контакты входного тока, OUTPUT обозначает выход. Важно соблюдать полярность. Если подключаемое напряжение постоянное, то контакт «+» нужно подключить к положительному полюсу батареи.

При использовании переменного напряжения учитывают маркировку входных проводов. На «L» подается фаза, на «N» – ноль. Фазу можно найти индикаторной отверткой.

Если присутствуют маркировки «

», «АС» или отсутствуют обозначения, соблюдение полярности не обязательно.

При подключении светодиодов к выходу полярность важно соблюдать в любом случае. В данном случае «плюс» от драйвера подключается к аноду первого светодиода цепи, а «минус» к катоду последнего.

Наличие в цепи большого количества светодиодов может вызвать необходимость разбить их на несколько групп, соединенных параллельно. Мощность будет складываться из мощностей всех групп, тогда как рабочее напряжение окажется равным показателю одной группы в цепи. Токи в данном случае также складываются.

Как проверить драйвер светодиодной лампы

Проверить работу драйвера светодиода можно подключив светильник к сети. Надо только убедиться в исправности осветительного прибора и отсутствии пульсаций.

Существует способ проверить драйвер и без светодиода. На него подается 220 В и измеряются показатели на выходе. Показатель должен быть постоянным, по значению немного больше указанного на блоке. Например указанные на блоке значения 28-38 В обозначают выходное напряжение без нагрузки около 40 В.

Описанный способ проверки не дает полного представления об исправности драйвера. Нередко приходится сталкиваться с исправными блоками, которые не включаются вхолостую или же работают нестабильно без нагрузки. Выходом представляется подключение к прибору специального загрузочного резистора. Выбрать сопротивление резистора можно по закону Ома с учетом указанных на блоке показателей.

Если после подключения резистора напряжение на выходе оказывается таким, как указано, драйвер исправен.

Срок службы

Драйверы имеют свой ресурс. Чащ всего производители гарантируют 30 тыс. часов работы драйвера при интенсивной эксплуатации.

На срок службы также будут влиять перепады напряжения в сети, температура, влажность.

Значительно сократить ресурс прибора может недостаточная загруженность. Если драйвер рассчитан на 200 Вт, а функционирует при 90 Вт, большая часть свободной мощности вызывает перегрузку сети. Возникают сбои, мерцания, лампа может перегореть в течение года.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: