Как работает счетчик отопления

Принцип работы теплового счетчика: как снять показания счетчика на отопление

Постоянно растущие тарифы на коммунальные услуги довольно чувствительно бьют по кошельку, поэтому сейчас многие задумываются о возможной экономии. Поскольку большая часть расходов в зимний период уходит на отопление, владельцы жилья ставят в дома счетчики: не только учитывающие расход воды, газа, но и тепла. Причина решения очевидна: это начисление сумм не по факту потребления, а по нормативам, которые сильно завышены. Последние приборы все же не слишком популярны у потребителей, однако не мешает заранее узнать принцип работы теплового счетчика, познакомиться с тем, как снять показания счетчика на отопление. В будущем эта информация может оказаться полезной.

Принцип работы теплового счетчика

С простыми приборами учета на воду или газ знакомы многие, однако с героем этой статьи сталкивались далеко не все. Чтобы понять принцип работы теплового счетчика, надо сначала познакомиться с главными элементами приборов, а потом уже переходить к их разновидностям.

Теплосчетчик — устройство, измеряющее количество тепловой энергии, которая поступает и расходуется в доме. В его составе два расходомера, такое же количество датчиков температуры, а также тепловычислитель — вычислительный блок-модуль. Все узлы размещены в корпусе, прибор подключается к трубопроводу теплосети.

Задача расходомеров — измерение расхода теплоносителя, датчиков температуры — измерение ее на входе и выходе. Обязанность тепловычислителя — прием сигналов от температурных датчиков и расходомеров, расчет и накопление данных о потребленных гигакалориях. Многие устройства имеют автономный элемент питания, поэтому не зависят от домашней электросети. Количество тепла высчитывается по формуле: Q = G · (t1 — t2), Гкал/ч, где t1и t2 — температура на входе и выходе, а G — расход теплоносителя.

Что дает использование теплосчетчика? Он нужен для контроля качества тепловых услуг. Если установлен тепловой прибор, то хозяева будут платить за отопление не по нормативам, а по факту. В этом случае индивидуальный счетчик позволит значительно сэкономить на счетах за коммунальные услуги. Приборы, установленные в многоквартирных домах, помогут проконтролировать эффективность мер по энергосбережению.

Какие параметры выдает счетчик тепла?

Прибор учета тепловой энергии — механизм достаточно сложный. Показатели расхода и температуры дают возможность рассчитать множество параметров, среди которых:

  • количество теплоэнергии, использованной за определенный промежуток времени (гигакалории);
  • расход теплоносителя в подающей трубе и в обратке (кубометр в час);
  • количество энергии охлаждения (гигакалории);
  • тепловая мощность (расход энергии в час);
  • объем теплоносителя в конкретном трубопроводе (кубометр);
  • температура воды: на входе/выходе (С°);
  • разница температур (С°).

Последние данные — дата и время.

Что влияет на точность приборов?

Теплосчетчик, как и любой измерительный прибор, имеет определенную погрешность, которая складывается из погрешностей расходомера, датчиков, вычислителя. Для квартирного учета эта допустимая цифра составляет 6-10%, однако разрешенный и реальный показатели могут отличаться. Причина этого расхождения — технические характеристики комплектующих. Увеличение показателей могут объяснить следующие факторы:

  • амплитуда температуры на входе и выходе, если она меньше 30°;
  • нарушения, которые произошли на этапе установки приборов нелицензионной организацией;
  • плохое качество трубопровода, очень жесткая вода, присутствие в теплоносителе механических примесей.

Увеличение цифр могут обусловить минимальные показатели расхода теплоносителя: когда они меньшие, чем обозначены в техническом паспорте устройства.

Разновидности теплосчетчиков

Массивные и дорогие приборы устанавливают в многоквартирные дома, где отопление централизованное. Из-за большого объема теплоносителя диаметр их патрубков может составлять 32-300 мм. Покупка и монтаж осуществляется за счет жильцов, за контроль показаний приборов отвечает представитель коммунальных служб, либо человек, единогласно выбранный на общедомовом собрании.

Индивидуальные устройства отличаются меньшими габаритами, цена их также ниже. Компактность их объясняется меньшей пропускной способностью — максимум 3 м 3 /ч. Монтаж зависит только от особенностей отопительной системы. В домах с горизонтальным ее расположением достаточно установить один прибор. Если в квартире вертикальные стояки, то монтировать теплосчетчик придется на каждый из них. В новых жилых комплексах приборы нередко устанавливают еще во время строительства.

Любой прибор имеет идентичные узлы, поэтому принцип работы теплового счетчика одинаков. Однако отличие есть: это особенность измерения расхода теплоносителя. Устройства бывают:

  • механическими;
  • электромагнитными;
  • ультразвуковыми;
  • вихревыми.

Ни один из видов не лишен некоторых недостатков, но свои преимущества каждый прибор тоже имеет.

Механические (тахометрические)

Это самые простые устройства роторного типа: винтовые, крыльчатые, турбинные. Механические тепловые счетчики по принципу работы схожи с приборами учета воды, отличие одно — присутствие датчиков температуры, которые располагаются на входе и выходе. К плюсам механической разновидности относится:

  • довольно низкая цена;
  • возможность вертикальной установки;
  • простота из-за отсутствия электрических элементов;
  • автономность работы, так как устройство питают батарейки.

Первый минус — необходимость сетчатого фильтра, без которого быстро забивается, поэтому приходит в негодность механизм прибора. По этой причине такие устройства разрешены только в роли индивидуального счетчика. Отсутствие защиты от гидроударов, невозможность сохранить информацию за сутки, отсутствие удаленного считывания данных — другие слабые места механических моделей.

Электромагнитные

В этом случае принцип измерения показателей основан на электромагнитной индукции. Данный теплосчетчик — гидродинамический генератор. Благодаря воздействию магнитного поля в жидкости происходит возбуждение электрического тока. Количество теплоты прибор определяет по напряженности поля, по разнице потенциалов на электродах. Достоинства электромагнитных устройств:

  • самые компактные размеры;
  • большая точность показателей;
  • вариативность питания — возможность работы от батареек или сети;
  • монтаж в любом положении, если теплоноситель всегда есть в месте установки.

Недостаток этих приборов — высокая чувствительность. Она требует качественной установки, постоянного обслуживания. Без регулярной чистки неминуемо появление погрешности в сторону увеличения. Электромагнитный прибор способен реагировать на электронные устройства, находящиеся поблизости. Еще один минус — высокая цена.

Ультразвуковые

В этих приборах используют ультразвук. Теплосчетчик измеряет время прохождения ультразвуковой волны, следующей от передатчика, который установлен на одной стороне трубы, до приемника, располагающегося на другой, противоположной. Воздействия на гидравлическое давление полностью отсутствует. Другие преимущества ультразвукового оборудования:

  • высокая точность показателей, почти «вечный» срок службы;
  • максимальная информативность, возможность считывания данных дистанционно;
  • модели, имеющие функцию регулировки воды по 2 каналам, она позволяет менять скорость теплоносителя, степень нагрева теплообменников.

Минусы ультразвуковых устройств — увеличение погрешности из-за плохого качества теплоносителя, высокая цена, работа только от сети, которая требует покупки ИБП (UPS). Эти недостатки не мешают этим тепловым счетчикам оставаться очень популярными. Причина — их максимальная надежность.

Вихревые

Принцип работы теплового счетчика основан на вихреобразовании, которое появляется, когда вода встречается с каким-либо препятствием. В механизме используют:

  • магнит, расположенный вне трубы;
  • призму, расположенную в ней вертикально;
  • электрод, который фиксируют дальше по ходу жидкости.
Читайте также:
Какие кирпичи нужны под лагу

При обтекании препятствия-призмы вода образует вихри. Используя частоту их образования, прибор выводит информацию об объеме жидкости, прошедшей через трубу. Плюсы вихревых устройств:

  • передача по радиосвязи сигналов о неисправности;
  • полное отсутствие влияния качества воды (труб) на устройства;
  • возможность монтажа в вертикальном или горизонтальном положении
  • отсутствие погрешности в показаниях приборов, установленных в старых домах;
  • минимальный расход энергии: одна батарейка в устройстве может служить несколько лет.

Минусы у вихревого оборудования есть. На его работу могут повлиять гидравлические удары, воздух в системе или крупные частицы мусора, попавшие в теплоноситель.

Как выбрать индивидуальный тепломер?

Принцип работы теплового счетчика не единственное, на что надо обращать внимание. Сначала надо поразмышлять о целесообразности такой покупки. Если в многоквартирном доме уже установлен этот прибор, то насущной необходимости приобретать его для своего жилья уже нет: затраты будут неоправданными. Первые и последние этажи, угловые комнаты не предполагают большой выгоды, если помещения не были качественно утеплены.

При вертикальном расположении отопительной системы к цене счетчиков для каждого стояка придется добавить суммы, необходимые для их монтажа. Поэтому даже простые умозаключения позволят понять, что выгоды ждать не придется: расходы «съедят» ту теоретическую пользу, которую можно получить от приборов.

Другой недостаток вертикального расположения отопительной системы — съем показаний со всех счетчиков. Их придется суммировать, затем выводить общий показатель. Это неудобно, а в расчеты может закрасться ошибка, поэтому при такой разводке отопления установка этих устройств — явление редкое.

Если покупка прибора может оправдать ожидания жильцов, то обращают внимание на несколько критериев. Среди них:

  • чувствительность измерительного оборудования к качеству теплоносителя;
  • энергонезависимость (возможность работы от батареек, а не от сети);
  • возможная погрешность тепловых счетчиков;
  • потери давления в отопительной системе;
  • длина прямых участков труб отопления;
  • возможность архивирования;
  • самодиагностика прибора.

Важные условия для потребителей — возможность самостоятельной проверки показаний, простая эксплуатация счетчиков. Если говорить о производителе, то лучше предпочесть те приборы, которые имеют больший (гарантированный) срок службы: более 2 лет. Последний фактор — цена, однако большой ассортимент этого оборудования — хороший шанс найти оптимальную модель.

Как снять показания счетчика на отопление?

Индивидуальный измеритель тепла довольно простое оборудование, однако любой новый прибор на первых порах кажется очень непонятным. Отправка показаний дисплея тепломера тоже нередко вызывает некоторые затруднения. Чтобы предотвратить такие ситуации, сначала рекомендуют внимательно прочитать паспорт устройства. Лучше это сделать несколько раз, потому что ответы на большинство вопросов даны именно там.

Несмотря на большое количество показателей, большинство их для компании-поставщика не важны. Главная цифра для нее — количество израсходованной энергии за определенный промежуток времени — за месяц. На информационном табло отображаются все показатели, однако для передачи нужен только первый из них. Это количество теплоэнергии. Этот параметр списывают с дисплея, затем от него отнимают показания за прошлый месяц. Результат вычитания будет искомым — количеством использованной тепловой энергии.

Еще один вариант — помощь специалистов: снятие показаний представителем службы теплоснабжения (управляющей компании). В этом случае хозяевам необходимо лишь обеспечить доступ к тепловому счетчику, расположенному в квартире.

Отправка показателей

Однако съем данных, их отправка зависит от конструктивных особенностей тепловых счетчиков. Операцию отправки данных делают таким образом:

  1. Переписывают, отнимают, а результат отправляют. Показания с жидкокристаллического дисплея помогает найти меню, разделы которого переключают кнопкой.
  2. Передатчик ОРТО, которым оснащают приборы, произведенные в Европе, дает возможность вывести на монитор ПК подробную информация, а затем ее распечатать.
  3. Радиомодуль, входящий в комплектацию некоторых моделей, рассчитан на беспроводную передачу данных. Его радиус — несколько сотен метров. После попадания в него приемника этот прибор показания фиксирует, затем доставляет их в теплоснабжающую организацию.
  4. Еще один «умный» вид — модуль M-Bus. Он поставляется с отдельными счетчиками, которые потом объединяют в единую систему, чтобы данные могли собирать теплоснабжающие организации. Группу устройств объединяют кабелем «витая пара», затем сеть присоединяют к концентратору, чья обязанность — их периодический опрос. По полученным результатам создается отчет, он доставляется в организацию, или выводится на дисплей ПК.

Если говорить о самом удобном способе, то это передача данных в организацию через интернет. Этот метод гарантируют экономию времени, дает возможность проверять задолженность, контролировать оплату, а также отслеживать потребление тепла в разные временные промежутки.

Для передачи показаний нужно найти адрес организации-поставщика, затем зарегистрироваться на сайте, получив возможность входа в личный кабинет. В нем есть форма ввода показаний, поэтому последний этап обычно сложностей не вызывает.

Ведение журнала

Этот вид контроля позволит владельцам прибора убедиться в стабильности работы, причем не только самого теплового счетчика, но и отопительной системы в целом. Для этой цели в журнал записывают все показания — количество использованной тепловой энергии, а также остальные (вспомогательные) параметры, которые не требуются теплоснабжающей организации, но для владельцев станут информативными.

Записи можно вести ежедневно. Для этой цели предварительно чертят таблицу: на бумаге или с помощью компьютерной программы. Если нет желания списывать параметры каждый день, то промежуток можно увеличить, однако первый вариант для оценки работы прибора все же оптимальный.

Проверка и поверка теплосчетчика

Главная задача теплового счетчика — расчет использованной теплоэнергии. Чтобы проверить корректную работу, хозяевами потребуется всего несколько параметров, которые подставляют в формулу, приведенную выше. Это:

  • расход теплоносителя в подающей трубе;
  • его температура в подающей трубе;
  • и температура в обратке.

Первое число умножают на разницу температур в подающей и обратной трубе. Результатом будет количество использованного тепла. Этот цифра должна дублировать ту, которая указана на дисплее тепломера.

Перед началом отопительного сезона прибор учета также рекомендуют проверять:

  1. Сначала его включают нажатием кнопки, затем записывают появившиеся показания.
  2. Через час после начала работы отопительной системы проверяют показания.

Если параметры за этот промежуток времени не изменились, изображение исчезло или появилось сообщение об ошибке, то надо немедленно сообщить о неисправности в компанию, которая осуществляет теплоснабжение, или в УК.

Первая поверка счетчика происходит перед его поступлением в продажу. Отсчет начинают не с момента его монтажа, а от той даты, что указана в паспорте устройства. Следующие поверку обязаны проводить представители организаций, имеющих право (лицензию) на подобную работу. После проведение поверки потребителю выдают соответствующее свидетельство.

Принцип работы теплового счетчика понимать досконально ни к чему, гораздо важнее знать, как снять показания счетчика на отопление, а затем без проблем их отправить. О том, что такое тепломеры, какие особенности есть у приборов, можно узнать из следующего видео:

Читайте также:
Ковролин или линолеум: что лучше, плюсы и минусы покрытий

Как работает тепловой счетчик, виды и характеристики этих устройств

Сегодня счетчик на отопление очень выгоден, так как такое устройство позволяет экономить денежные средства. Это происходит, потому что после его установления плата за тепло будет осуществляться по тарифам. А значит, счетчик будет считать исключительно, количество тепловой энергии, которое поступает, и не нужно будет переплачивать. По мере того как растут цены, люди все больше задумываются, как сэкономить.

Немаловажным пунктом расхода в каждой семье является оплата за теплоэнергию. Для экономии в этом направлении есть тепловой счетчик отопления.

Покупая счетчик для отопления, в его комплекте есть (рис.1):

  • Непосредственно счетчик, то есть устройство, которое считает количество теплоносителя.
  • Датчики температуры. Их должно быть 2. Они подают показания про температуру нагрева воды, которые поступают в основной электронный модуль.
  • А также другие комплектующие, которые идут в комплекте индивидуально, зависимо от вида прибора.

Рис. 1 Комплектация устройства

Принцип работы теплового устройства

Теплосчетчик устанавливается для того, чтобы определить количество воды, то есть теплоносителя, а также сделать замер его температуры. Как правило, тепловой прибор устанавливается на горизонтальную трубу. При этом работать будет всего один прибор отопления на всю квартиру. Но если разводка труб вертикальная (отдельный стояк на каждую батарею), а такой трубопровод в большинстве старых многоэтажных домов. В этой ситуации на каждую батарею ставится отдельный прибор.

Факторы, которые могут повлиять на погрешность счетчика отопления:

  • Если есть тепловая разница меньше +30°;
  • Если нарушена циркуляция теплоносителя, а именно малый расход.
  • Неправильная установка, то есть неправильно установлены датчики температуры, не правильное направление счетчика;
  • Плохое качество воды и труб, то есть жесткая вода, и различные примеси в ней (ржавчина, песок и т.д.).

Виды тепловых приборов отопления

К основным видам теплосчетчиков можно отнести:

  • Тахометрический или механический;
  • Ультразвуковой;
  • Электромагнитный;
  • Вихревой.

А также есть еще классификация по области применения. Например, промышленные или индивидуальные.

Промышленный теплосчетчик отопления – это общедомовой (в многоквартирных домах) аппарат, еще его устанавливают на производственных объектах. Этот агрегат имеет большой диаметр от 2,5 см до 30 см. Диапазон количества теплоносителя – от 0,6 до 2,5 м3 в час.

Индивидуальный прибор отопления – это тот агрегат, который устанавливают внутри квартиры. Он отличается тем, что его каналы имеют небольшой диаметр, а именно не более 2 см. А также диапазон количества теплоносителя становит от 0,6 до 2,5 м3 в час. Этот счетчик имеет в комплектации 2 устройства, а именно, тепловычислитель и счетчик для горячей воды.

Механический теполосчетчик отопления

Этот прибор измеряет, сколько горячей воды прошло через подающую трубу. Поток воды приводит в движение механизм (вращательное движение). Этот счетчик доступнее остальных по цене. Но есть и такие негативные факторы, как то, что этот счетчик чувствителен к загрязнениям, например, к образованию ржавчины, грязи, окалины. Что бы предотвратить это, нужно устанавливать специальный магнитно-сетчатый фильтр.

Рис. 2 Механическая модель теплового
устройства

В комплекте такой прибор имеет тепловычислитель, а также водосчетчик роторного типа (рис. 2).

Виды механических устройств:

  • Крыльчатый;
  • Винтовой;
  • Турбинный.

К основным плюсам этой модели можно отнести низкую цену, питание от батареек, а также они достаточно просты в эксплуатации.

  • Чувствительность устройства к гидроударам;
  • Механизм этого прибора быстро изнашивается;
  • Из-за него увеличивается давление в системе отопления;
  • Механические модели не хранят информацию, собранную за сутки.

Ультразвуковой теплосчетчик отопления

Этот вид счетчиков наиболее часто устанавливается как общий прибор для многоквартирных домов. Принцип его работы заключается в ультразвуковом сигнале, благодаря которому прибор, собственно, и делает замеры (с помощью датчика). Этот сигнал пропускается через воду. Комплектация этого устройства состоит из излучателя и прибора, который подает сигнал. Устанавливаются эти комплектующие один напротив другого.

Рис. 3 Ультразвуковой прибор

Ультразвуковое устройство лучше устанавливать в домах с новым трубопроводом, так как он очень чувствительный к загрязнениям.

Есть такие виды ультразвуковых теплоизмерителей:

  • Частотный;
  • Доплеровский;
  • Временный;
  • Корреляционный.

Каждый из этих видов дает точные показания, только если вода чистая и без примесей. Любые загрязнения или даже воздушные пузыри влияют на показания.

К плюсам этого счетчика относятся информативность, которая достигается благодаря жидкокристаллическому дисплею и то, что при установке этой модели не увеличивается гидравлическое давление.

Но есть и такой минус в работе ультразвукового прибора: если подача электроэнергии нестабильна, то подключают его через UPS.

Электромагнитный счетчик отопления

Это дорогая модель тепловых приборов, и относится к самым точным приборам. Принцип работы электромагнитного счетчика заключается в прохождении теплоносителя через прибор, при этом электромагнитное поле, проводит слабый ток. Это устройство нужно обслуживать, то есть периодически очищать.

Рис. 4 Электромагнитные
теплоизмерители

Электромагнитный прибор состоит из 3 основных частей:

  • Первичный преобразователь;
  • Электронный блок, который может работать как от батареек, так и от сети;
  • Температурные датчики.

При этом электромагнитный тепловой прибор может быть установленным в любом положении (горизонтальное вертикальное, или под углом), но это только в случае, когда область где установлен счетчик, постоянно заполнена теплоносителем.

Если диаметр трубы не совпадает с диаметром фланца прибора, то можно использовать переходники.

Вихревой прибор отопления

Этот счетчик можно устанавливать на трубы, как горизонтального типа, так и вертикального. Принцип работы заключается в измерениях о скорости и количестве вихрей. То есть, это помеха на пути потока воды, вода огибает помеху и вследствие этого создаются вихри. Он не чувствителен к проявлению различных засорений, например, ржавчина, окалина и т.д. Неправильные показания этот счетчик может выдавать только в случае, если в системе есть воздух.

Комплектация вихревого прибора отопления:

  • Счетный механизм;
  • Корпус;
  • Пластины;
  • Теплообтекатель;
  • Фильтр.

Рис. 5 Вихревой прибор

Устанавливается вихревой счетчик горизонтально между двумя трубами.

Установка счетчика отопления

Есть специальные компании, которые выполняют монтаж теплосчетчиков, а именно:

  • Они делают проект;
  • Подают документы в соответствующие органы, для получения разрешения;
  • Устанавливают счетчик и сразу регистрируют его;
  • Далее должны проводиться тестовые испытания и прибор сдается в эксплуатацию.

Если счетчик не зарегистрирован должным путем, то его показания не учитываются. Для уплаты по счетам нужно подавать показатели, и в квитанции приходит сумма по установленному тарифу.

В разработанном проекте должны быть включены такие моменты:

  • Устройство (вид) модели для конкретной системы отопления;
  • Необходимые расчеты по расходам теплоносителя, а также расчеты тепловой нагрузки;
  • Должна быть схема отопительной системы, с указанием места, где будет устанавливаться счетчик;
  • Должно быть рассчитано сопротивление гидравлики прибора;
  • Расчет возможных тепловых потерь;
  • А также обязательно расчет растрат за теплоэнергию.
Читайте также:
Как нельзя сооружать септик на даче своими руками

Проверка счетчиков отопления

Изначально качественный счетчик продается уже первично протестированным. Это происходит на заводе, и подтверждением этому является клеймо, на котором есть запись. Эта запись должна соответствовать записям в документации. В документах также должен быть указан срок, то есть межповерочный интервал. Если этот срок истек нужно обратиться в соответствующую организацию, которая устанавливает и поверяет их, или в сервисный центр завода. Есть организации, которые установив счетчик, и дальше работают над техническим обслуживанием прибора.

Принцип работы счетчика тепла на батарею отопления в квартире

Во время отопительного сезона коммунальные платежи увеличиваются в 2—3 раза, поскольку основная часть средств идет на оплату отопления. Люди часто не задумываются о том, что можно существенно сэкономить в случае установки счетчика тепла на батарею. Он поможет контролировать температуру, поэтому владелец заплатит только за то тепло, которое поступило к нему в квартиру. Подобные приборы сегодня набирают популярность, поскольку отличаются эффективностью.

  • 1. Общие сведения
  • 2. Принцип работы
  • 3. Разновидности приборов
    • 3.1. Ультразвуковые устройства
    • 3.2. Электромагнитные счетчики
    • 3.3. Вихревые приспособления

    Счетчики тепла на батарею в квартире устроены просто и выполняют функцию отслеживания количества тепла от радиатора и изменение температуры воздуха в помещении. Любое приспособление состоит из температурного датчика, счетчика, считывающего количество воды, циркулирующей по системе, а также специального вычислителя, который собирает данные обоих приспособлений и рассчитывает количество потребленного тепла.

    Как правило, конструкцию сочетают с установкой счетчика теплоносителя, работающего от электричества или обычных батареек. Для эффективности системы необходимо приобрести два датчика тепла на батарею. Один устанавливается на входе системы отопления, а второй — на выходе. Счетчик теплоносителя разрешается монтировать в обеих точках.

    Проще всего устанавливать конструкцию в квартирах, где разводка трубопровода горизонтальная, поскольку она предполагает, что все радиаторы подключены к одной трубе. Это облегчает подсчет теплоносителей. Достаточно установить два датчика, а также основное устройство.

    Если разводка труб отопления вертикальная, процесс несколько усложняется, поскольку радиаторы в квартире могут быть подключены к разным стойкам. Работники коммунальных служб предупреждают жильцов многоквартирных домов, что при такой отопительной системе устанавливать теплодатчик не рекомендуется. Это связано с большими сложностями, так как на каждый радиатор необходимо поставить отдельный датчик.

    При расчете необходимо будет учитывать показания со всех датчиков, суммировать их и выводить общий показатель. Это не всегда удобно, да и расчеты могут оказаться не совсем верными, поэтому при подобной разводке отопительных труб приспособление устанавливается довольно редко.

    Принцип работы теплосчетчика на радиатор отопления основан на считывании количества теплоносителя, пройденного по трубам, то есть объема циркулирующей воды. Датчики определяют температуру воды в разных отделах отопительной системы и ее изменения в зависимости от нахождения в той или иной части.

    Основная часть приспособления собирает данные со всех датчиков, вычисляет средний показатель с помощью специальной формулы и фиксирует его в архиве. При необходимости вывести информацию можно на экран.

    Такая система поможет владельцу хорошо сэкономить на коммунальных платежах, но установить ее довольно проблематично. Для этого понадобится получить разрешение от начальника теплосети, а также все документы, подтверждающие, что прибор работает правильно. В большинстве случаев человек не сможет использовать датчики, если в остальных квартирах их нет.

    По закону платить по показаниям накладного теплосчетчика на радиатор можно только при условии, что в других квартирах есть такие же датчики, а также установлен общедомовой прибор. В противном случае владельца ожидает отказ и он будет вполне обоснован, поскольку вся процедура довольно сложная и длительная.

    Некоторые владельцы квартир устанавливают подобное оборудование самостоятельно и без разрешения коммунальных служб. Такой подход запрещается, да и при попытках платить по показаниям счетчика возникнут проблемы, поскольку перед этим его необходимо сдать в эксплуатацию и опломбировать.

    Классификация теплосчетчиков основана на типе устройства, которое измеряет количество теплоносителя, то есть горячей воды. Сегодня существует несколько разновидностей, которые устанавливаются чаще всего. К ним относятся механические, ультразвуковые, вихревые и электромагнитные приборы.

    Механические работают благодаря тому, что во время прохождения через них теплоносителя вращается специальная деталь. Каждый оборот обозначает определенный объем воды. Устройство фиксирует количество оборотов и делает дальнейшие расчеты. Модели могут быть крыльчатыми и турбинными, что зависит от вида вращающейся детали. Бывают и другие разновидности приборов, но эти встречаются чаще всего. У устройства есть несколько преимуществ:

    • простота и надежность конструкции позволяет установить ее без проблем и успешно эксплуатировать на протяжении длительного периода;
    • прибор не требует подключения к источнику электроэнергии, что уменьшает ее затраты и размер коммунальных платежей;
    • показатели приспособления стабильны при любых обстоятельствах;
    • стоимость прибора доступная;
    • установить счетчик просто, разрешается монтировать его в любом положении, что также облегчает задачу.

    Важным условием считается установка фильтра грубой очистки, который обеспечит более точные показания. При его отсутствии они сильно искажаются. К недостаткам приспособления можно отнести менее продолжительный срок службы и быстрое изнашивание выпирающих деталей. Стоит также отметить, что при значительном уменьшении объема теплоносителя в системе прибор не будет фиксировать его циркулирование и количество.

    Ультразвуковой тепловой счетчик на батарею всегда состоит из двух компонентов — излучателя ультразвукового сигнала и приемника, который его считывает. Сигналы поступают в зависимости от количества теплоносителя, циркулирующего по системе. Датчик на их основе рассчитывает общий объем и выводит его на монитор.

    Стоит отметить, что данные будут точными при условии чистоты воды и отсутствия воздуха или каких-либо посторонних предметов, циркулирующих по системе. Если теплоноситель сильно загрязнен, погрешность показателей будет значительной. Особое внимание стоит уделить жесткости воды, поскольку при скоплении на трубах налета данные прибора также будут неточными. У такого механизма существует несколько видов:

    • временный;
    • доплеровский;
    • корреляционный;
    • частотный.

    К основным преимуществам конструкции можно отнести возможность установки разных теплосчетчиков и точность данных при выполнении всех условий. Стоит отдельно отметить, что вся информация хранится в памяти устройства, поэтому существует возможность определения расхода тепла в конкретный промежуток времени.

    Недостатками устройства считаются сложности в его обслуживании и риск завоздушивания системы. Стоимость приспособления также довольно высокая, что делает его не таким популярным, как механические модели.

    Электромагнитные модели разрешается устанавливать только на систему отопления с горизонтальной разводкой труб. Принцип их работы основан на создании магнитного поля, с помощью которого определяется количество циркулирующего теплоносителя.

    Когда вода проходит сквозь магнитное поле, в ней появляется электрический ток, позволяющий узнать скорость нагрева жидкости. Большую роль играет напряжение тока, определяемое посредством двух электродов. Учитывая эти данные, прибор вычисляет объем циркулирующей воды. К основным достоинствам электромагнитных моделей относятся:

    1. 1. Высокий уровень точности, позволяющий определить количество теплоносителя.
    2. 2. Долгий срок службы.
    3. 3. Возможность установки в любом положении.

    Однако существуют и некоторые недостатки. Наиболее важным минусом считается стоимость приспособления, которая превышает все предыдущие модели. При установке необходимо очень аккуратно и точно подсоединить электроды, иначе данные будут неточными. Большую роль играет чистота воды и отсутствие примесей, которые могут повлиять на полученные показатели. Обслуживание счетчика обходится дорого, поэтому модель устанавливают нечасто.

    Конструкция теплосчетчика рассчитана на то, что при попадании в него теплоносителя образуются вихри. Они появляются в результате столкновения с препятствием, которое специально встроено в приспособление. Прибор определяет частоту каждого образованного вихря, поскольку она пропорциональна скорости движения воды.

    Счетчик может считывать скорость благодаря ультразвуку или магнитному полю, а после этого определяет объем горячей воды в системе. У вихревого приспособления есть несколько достоинств:

    1. 1. Стоимость его доступна, а срок службы довольно длительный.
    2. 2. Изнашивание деталей минимальное, поэтому замена требуется редко.
    3. 3. Монтировать его разрешается не только на горизонтальное разветвление отопительной системы, но и на вертикальное.
    4. 4. Потребность приспособления в электроэнергии минимальна.

    Несмотря на преимущества, прибор имеет и недостатки. Наиболее значимым считается необходимость его монтажа только на большом отрезке трубопровода. Устройство чувствительно к вибрациям, может выйти из строя при их частом воздействии. Как и другие приборы, теплосчетчик очень чувствителен к качеству теплоносителя. Если вода загрязнена, данные искажаются. Однако достоинства преобладают над минусами, поэтому приспособление пользуется популярностью.

    На рынке сегодня представлено множество фирм, которые производят различные модели счетчиков. Наиболее популярными считаются следующие приспособления:

    1. 1. Elf Ду выпускается польской компанией. Мощность его рассчитана на 85 кВт. Отличается высоким качеством сборки и хорошей устойчивостью к магнитному воздействию.
    2. 2. Senson II Ду20 имеет преимущество перед другими моделями, поскольку стоит недорого. Устанавливать его можно при любом варианте разводки труб отопления. Имеет гарантию и длительный срок службы, простой в установке и управлении.
    3. 3. SensonStar 2 Engelmann — продукция немецкого производства. Отличается высоким качеством сборки и точностью. Считывает показатели немагнитным способом.
    4. 4. Карат Компакт 201 — счетчик российской фирмы, отличающийся хорошей сборкой, небольшими размерами и невысокой стоимостью. Детали приспособления изготовлены по особой технологии, которая препятствует коррозии даже при длительной эксплуатации, а также делает их износоустойчивыми.

    Благодаря обилию продукции можно выбрать любую модель, учитывая свои потребности и финансовые возможности. Рекомендуется перед приобретением проконсультироваться со специалистом, который подскажет, какой именно счетчик будет лучшим при той или иной системе отопления.

    После получения разрешения на установку владелец квартиры должен предоставить готовый проект со всеми расчётами и схемой. Затем рекомендуется обратиться в специальную фирму, которая занимается монтажом. Представители разрабатывают свой план установки и монтируют счетчик.

    Следующим этапом будет регистрация прибора в соответствующих службах. Только после этого разрешается начать применение прибора и регулярно снимать показания. При эксплуатации необходимо следить за работой приспособления. Не допускается его механическое повреждение, попадание в него чрезмерного количества влаги или горячего воздуха.

    При отсутствии фильтра грубой очистки прибор может быстро выйти из строя, поэтому рекомендуется учитывать это при установке. При соблюдении инструкции оборудование не нуждается в замене на протяжении длительного периода. В случае аварийной ситуации не стоит пытаться самостоятельно устранить поломку. Лучше обратиться к специалисту.

    Счетчик тепла на батарею — ценное приспособление, которое можно установить в квартире. Он помогает экономить средства при оплате коммунальных платежей и контролировать уровень нагрева теплоносителя в отопительной системе. При правильной эксплуатации прибор станет полезным помощником в каждом доме.

    Как работает счетчик отопления: принцип работы и виды теплосчётчиков

    Тепловой счетчик – устройство по учету потребленного теплоносителя, в настоящее время очень выгоден, так как позволяет экономить средства благодаря оплате только за потребленное тепло, исключая переплату.

    Важным моментом является правильный выбор вида прибора в зависимости от места установки и конструктивных особенностей теплосети, а также заключение договора с обслуживающей организацией, которая будет контролировать техническое состояние устройства.

    Существует множество моделей тепловых счетчиков, отличающихся устройством и размерами, но принцип того, как работает счетчик отопления, остался такой же, как и на простейшем приборе, который измеряет температуру и расход воды на входе и выходе трубопровода объекта теплоснабжения. Различия проявляются только в инженерных подходах к решению данного вопроса.

    Принцип работы

    Работа теплосчетчика построена на принципе вычисления количества теплоты с применением данных, взятых от датчика расхода теплоносителя и пары датчиков температуры. Происходит замер количества воды, прошедшего через отопительную систему, а также разница температур на входе и выходе.

    Количество теплоты вычисляют произведением расхода воды, прошедшей по отопительной системе, и разницей температур поступившего и вышедшего теплоносителя, что выражается формулой

    Q = G * (t1-t2), гКал/ч, в которой:

    • G – массовый расход воды, т/ч;
    • T1,2 – температурные показатели воды на входе и выходе из системы, о С.

    Все данные с датчиков поступают на вычислитель, который после их обработки определяет значение потребления тепла и записывает результат в архив. Значение потребленного тепла отображается на дисплее прибора и может быть снято с любой момент.

    Что влияет на точность теплосчетчика

    Techem compact V

    Теплосчетчик, как и любой точный прибор, при измерении потребленного тепла имеет определенную суммарную погрешность, которая складывается их погрешностей термодатчиков, расходомера и вычислителя. В квартирном учете используют приборы, имеющие допустимую погрешность 6-10%. Реальный показатель погрешности может превышать базовый, зависящий от технических характеристик комплектующих элементов.

    Увеличение показателя обуславливают следующие факторы:

    1. Амплитуда входящей и выходящей температуры теплоносителя, которая меньше 30 о С.
    2. Нарушения при монтаже относительно требований изготовителя (при установке нелицензионной организацией, производитель снимает с него гарантийные обязательства).
    3. Не надлежащее качество труб, жесткая вода, используемая в теплоносителе, и наличие в нем механических примесей.
    4. При расходе теплоносителя ниже минимального значения, обозначенного в технических характеристиках устройства.

    В чем измеряется потребленное тепло

    Расчет тарифа потребленного тепла принято производить в гигакалориях. Единица измерения относится к внесистемным, и традиционно используется со времен существования СССР. Приборы, произведенные в Европе, вычисляют потребленное тепло в ГигаДжоулях (система СИ), или общепринятой международной внесистемной единице кВт*ч (kWh).

    Особых трудностей в том, как рассчитать плату за отопление, различия систем измерения у сотрудников теплоснабжающих организаций не вызывают, так как одни единицы легко переводятся в другие при помощи определенного коэффициента.

    Виды тепловых счетчиков

    Все доступные к приобретению счетчики отопления делятся на следующие виды:

    • Тахометрический или механический

    Производит измерение количества прошедшего через сечение трубы теплоносителя при помощи вращающейся детали. Активная часть аппарата может быть винтовая, турбинная или в виде крыльчатки.
    Приборы доступны по стоимости и просты в использовании. Слабая сторона подобных устройств – чувствительность к загрязнениям и оседанию внутри механизма грязи, ржавчины, и к гидроударам. Для этого в конструкции предусмотрен специальный магнито-сетчатый фильтр. Также приборы не способны хранить собранные за сутки данные.

    • Ультразвуковой

    Чаще применяется в качестве общего счетчика многоквартирного дома. Имеет разновидности:

    1. частотный,
    2. временной,
    3. доплеровский,
    4. корреляционный.
      Работает по принципу генерации ультразвука, проходящего через воду.

    Сигнал генерируется передатчиком и улавливается приемником после прохождения через толщу воды. Гарантирует высокую точность измерения только при достаточной чистоте теплоносителя.

    • Электромагнитный

    Отличается высокой точностью показаний и стоимостью. Работа устройства основана на принципе прохождения через поток теплоносителя магнитного поля, которое реагирует на его состояние. Аппарат нуждается в периодическом обслуживании и очистке. Состоит из первичного преобразователя, электронного блока и термодатчиков.

    • Вихревой

    Работает по принципу измерения количества и скорости вихрей. Не чувствителен к засорениям, но реагирует на появление в системе воздуха. Прибор устанавливают в горизонтальном положении между двумя трубами.

    Как правильно передать показания

    Квартирный измеритель тепла функционально намного проще современного мобильного телефона, но у пользователей периодически возникают непонимания процесса снятия и отправки показаний дисплея.

    В зависимости от конструктивных особенностей прибора, съем данных производят следующими способами:

    1. С жидкокристаллического дисплея путем визуальной фиксации показаний с различных разделов меню, которые переключаются кнопкой.
    2. ОРТО передатчик, который включают в базовую комплектацию европейских приборов. Способ позволяет вывести на ПК и распечатать расширенную информацию о работе прибора.
    3. M-Bus модуль входит в поставку отдельных счетчиков с целью подключения устройства к сети централизованного сбора данных теплоснабжающими организациями. Так, группу приборов объединяют в слаботочную сеть кабелем «витая пара» и подсоединяют к концентратору, который их периодически опрашивает. После формируется отчет и доставляется в теплоснабжающую организацию, либо выводится на дисплей компьютера.
    4. Радиомодуль, входящий в поставку некоторых счетчиков, передает данные беспроводным способом, на расстояние, достигающее нескольких сотен метров. При попадании приемника в радиус действия сигнала, показания фиксируются и доставляются в теплоснабжающую организацию. Так, приемник иногда закрепляют на мусоровоз, который при следовании по маршруту ведет сбор данных с близлежащих счетчиков.

    Архивирование показаний

    Все электронные тепловые счетчики сохраняют в архиве данные о накопленных показателях расхода тепловой энергии, времени работы и простоя, температуры теплоносителя в прямом и обратном трубопроводе, общее время наработки и коды ошибок.

    Стандартно прибор настраивается на различные режимы архивирования:

    • часовой;
    • суточный;
    • месячный;
    • годовой.

    Некоторые из данных, такие как общее время наработки и коды ошибок считываются только при помощи ПК и установленного на нем специального программного обеспечения.

    Чтобы не возникало проблем с оплатой квитанций, необходимо своевременно передавать показания счетчиков воды, как это правильно делать, читайте далее.

    Передача показаний через интернет

    Одним из наиболее удобных способов передачи показаний о потребленной тепловой энергии в учреждения по ее учету является передача через интернет. Его удобство и практичность заключается в возможности самостоятельно контролировать оплату и задолженность, а также отслеживать потребление тепла в разные периоды без пребывания в очередях и при затратах незначительного количества времени.

    Для этого необходимо наличие персонального компьютера, подключенного к сети и адрес сайта контролирующей организации, а также логин и пароль личного кабинета, после входа в который откроется форма ввода показаний. Для предупреждения возникновения разногласий при возможном сбое или неполадках на сайте, желательно делать «скрины» экрана после ввода информации.

    Поломки и ремонт

    Техническое обслуживание прибора ограничивается его поддержанием в работоспособном состоянии, регулярном осмотре, недопущении причин, вызывающих преждевременный износ и поломку. Согласно п. 80 Правил коммерческого учета теплоносителя все работы по обслуживанию и контролю корректной работы счетчика осуществляет потребитель. Со стороны владельца он в особом уходе не нуждается.

    При обнаружении какой-либо неполадки в работе прибора учета, потребитель должен в течение 24 ч. известить об этом обслуживающую фирму и организацию, осуществляющую теплоснабжение. Вместе с прибывшим уполномоченным сотрудником составляется акт, который после передается в теплоснабжающую организацию с отчетом о потреблении тепла за соответствующий период. При несвоевременном извещении о поломке, потребление тепла рассчитывают стандартным способом.

    Обслуживающая фирма предоставит услуги по ремонту или замене счетчика, а на время ремонта может установить подменный прибор. Стоимость работ по монтажу и демонтажу, ремонту и другим услугам регламентирована договором между потребителем и обслуживающей фирмой.

    Регистрация ошибок

    Стандартно тепловые счетчики оснащаются системой самотестирования, которая способна выявить неточности работы. Вычислитель периодически запрашивает датчики, и при их неисправности фиксирует ошибку, присваивает ей код и записывает в архив. Наиболее часто встречаются следующие регистрируемые ошибки:

    1. Неправильная установка или повреждение датчика температуры или прибора расхода.
    2. Недостаточный заряд элемента питания.
    3. Наличие воздуха в проточной части.
    4. Отсутствие расхода при наличии разницы температур в течение времени более 1 часа.

    Изучите механизм работы и оцените преимущества регулятора для радиатора отопления, прочитав эту статью.

    Снятие и установка счетчика отопления

    До того, как установить счетчик на отопление в квартире или многоквартирный дом, приглашаются специалисты специализированных компаний, имеющих разрешительную документацию на проведение данного вида работ. Исходя из конкретной ситуации, они могут взять на себя следующие обязательства:

    1. Разработать проект.
    2. Подать документы в определенные органы с целью получения разрешений.
    3. Установить и зарегистрировать прибор. При отсутствии регистрации, оплата поставленного тепла производится согласно установленных тарифов.
    4. Провести тестовые испытания и сдать прибор в эксплуатацию.

    Разработанный проект должен включать следующие моменты:

    1. Вид и устройство модели, которая предназначена для работы в конкретной системе отопления.
    2. Необходимые расчеты по тепловой нагрузке и расходу теплоносителя.
    3. Схема системы отопления с местом установки теплового счетчика.
    4. Расчет возможных потерь тепла.
    5. Расчет оплаты за поставку тепловой энергии.

    Проверка счетчиков отопления

    Как правило, качественный прибор поступает в точку продажи первично протестированным. Процедура осуществляется на заводе-изготовителе, свидетельством чего выступает клеймо с записью, соответствующей записи в документации. Кроме того, в документах указывают межповерочный интервал.

    По истечению данного срока владельцу прибора необходимо обратиться в сервисный центр предприятия-изготовителя или в организацию, уполномоченную проверять и устанавливать счетчик. Существуют фирмы, которые после установки прибора занимаются его техобслуживанием.

    Периодическое подтверждение метрологического класса, или одним словом поверка, осуществляется специализированной фирмой, имеющей проливные установки, а также разрешение, выданное органами метрологического надзора.

    С этой целью вызывают метролога, снимают пломбы, специалист обслуживающей организации демонтирует счетчик и отправляет на поверку. После проверки и обратного монтажа прибор опломбируют.

    Счетчик на отопление – прибор для учета тепловой энергии, позволяющий экономить средства, оплачивая только фактически потребленную услугу. Несоблюдение указанных ниже условий приведет к невозможности рассчитываться за тепло согласно показаний счетчика.

    Для корректной и долговременной работы устройства важно выбрать тип счетчика, который обязательно должен присутствовать в госреестре допустимых к использованию измерительных средств, а также иметь метрологическую аттестацию в соответствующей инстанции.

    Устанавливается прибор предприятием, имеющим лицензию на проведение подобных работ.

    Принцип работы солнечной батареи: как устроена и работает солнечная панель

    Эффективное преобразование бесплатных лучей солнца в энергию, которую можно использовать для электроснабжения жилья и иных объектов, – заветная мечта многих апологетов зеленой энергетики.

    Но принцип работы солнечной батареи, и ее КПД таковы, что о высокой эффективности таких систем пока говорить не приходится. Было бы неплохо обзавестись собственным дополнительным источником электроэнергии. Не так ли? Тем более что уже сегодня и в России с помощью гелиопанелей “дармовой” электроэнергией успешно снабжается немалое количество частных домохозяйств. Вы все еще не знаете с чего начать?

    Ниже мы расскажем вам об устройстве и принципах работы солнечной панели, вы узнаете, от чего зависит эффективность гелиосистемы. А размещенные в статье видеоролики помогут собственноручно собрать солнечную панель из фотоэлементов.

    Солнечные батареи: терминология

    В тематике «солнечной энергетики» достаточно много нюансов и путаницы. Часто новичкам разобраться во всех незнакомых терминах поначалу бывает трудно. Но без этого заниматься гелиоэнергетикой, приобретая себе оборудование для генерации “солнечного” тока, неразумно.

    По незнанию можно не только выбрать неподходящую панель, но и попросту сжечь ее при подключении либо извлечь из нее слишком незначительный объем энергии.

    Вначале следует разобраться в существующих разновидностях оборудования для гелиоэнергетики. Солнечные батареи и солнечные коллекторы – это два принципиально разных устройства. Оба они преобразуют энергию лучей солнца.

    Однако в первом случае на выходе потребитель получает энергию электрическую, а во втором тепловую в виде нагретого теплоносителя, т.е. солнечные панели используют для отопления дома.

    Второй нюанс – это понятие самого термина «солнечная батарея». Обычно под словом «батарея» понимается некое аккумулирующее электроэнергию устройство. Либо на ум приходит банальный отопительный радиатор. Однако в случае с гелиобатареями ситуация кардинально иная. Они ничего в себе не накапливают.

    Солнечные батареи предназначены исключительно для генерации электрического тока. Он, в свою очередь, накапливается для снабжения дома электричеством ночью, когда солнце опускается за горизонт, уже в присутствующих дополнительно в схеме энергообеспечения объекта аккумуляторах.

    Батарея здесь подразумевается в контексте некой совокупности однотипных компонентов, собранных в нечто единое целое. Фактически это просто панель из нескольких одинаковых фотоэлементов.

    Внутреннее устройство гелиобатареи

    Постепенно солнечные батареи становятся все дешевле и эффективней. Сейчас они применяются для подзарядки аккумуляторов в уличных фонарях, смартфонах, электроавтомобилях, частных домах и на спутниках в космосе. Из них стали даже строить полноценные солнечные электростанции (СЭС) с большими объемами генерации.

    Каждая солнечная батарея устроена как блок из энного количества модулей, которые объединяют в себе последовательно соединенные полупроводниковые фотоэлементы. Чтобы понять принципы функционирования такой батареи, необходимо разобраться в работе этого конечного звена в устройстве гелиопанели, созданного на базе полупроводников.

    Виды кристаллов фотоэлементов

    Вариантов ФЭП из разных химических элементов существует огромное количество. Однако большая их часть – это разработки на начальных стадиях. В промышленных масштабах сейчас выпускаются пока что только панели из фотоэлементов на основе кремния.

    Обычный фотоэлемент в гелиопанели – это тонкая пластина из двух слоев кремния, каждый из которых имеет свои физические свойства. Это классический полупроводниковый p-n-переход с электронно-дырочными парами.

    При попадании на ФЭП фотонов между этими слоями полупроводника из-за неоднородности кристалла образуется вентильная фото-ЭДС, в результате чего возникает разность потенциалов и ток электронов.

    Кремниевые пластины фотоэлементов различаются по технологии изготовления на:

    1. Монокристаллические.
    2. Поликристаллические.

    Первые имеют более высокий КПД, но и себестоимость их производства выше, нежели у вторых. Внешне один вариант от другого на солнечной панели можно различить по форме.

    У монокристаллических ФЭП однородная структура, они выполняются в виде квадратов со срезанными углами. В отличие от них поликристаллические элементы имеют строго квадратную форму.

    Поликристаллы получаются в результате постепенного охлаждения расплавленного кремния. Метод этот предельно прост, поэтому такие фотоэлементы и стоит недорого.

    Но производительность в плане выработки электроэнергии из солнечных лучей у них редко превышает 15%. Связано это с “нечистотой” получаемых кремниевых пластин и внутренней их структурой. Здесь чем чище p-слой кремния, тем более высокий выходит КПД у ФЭП из него.

    Чистота монокристаллов в этом отношении гораздо выше, нежели у поликристаллических аналогов. Их делают не из расплавленного, а из искусственно выращенного цельного кристалла кремния. Коэффициент фотоэлектрического преобразования у таких ФЭП уже достигает 20-22%.

    Обращенный к солнцу верхний слой пластинки-фотоэлемента делается из того же кремния, но уже с добавлением фосфора. Именно последний будет источником избыточных электронов в системе p-n-перехода.

    Настоящим прорывов в области использования солнечной энергии стала разработка гибких панелей с аморфным фотоэлектрическим кремнием:

    Принцип работы солнечной панели

    При падении солнечных лучей на фотоэлемент в нем генерируются неравновесные электронно-дырочные пары. Избыточные электроны и «дырки» частично переносятся через p-n-переход из одного слоя полупроводника в другой.

    В итоге во внешней цепи появляется напряжение. При этом на контакте p-слоя формируется положительный полюс источника тока, а на n-слоя – отрицательный.

    Подключенные к внешней нагрузке в виде аккумулятора фотоэлементы образуют с ним замкнутый круг. В результате солнечная панель работает, как своеобразное колесо, по которому вместе белки “бегают” электроны. А аккумуляторная батарея при этом постепенно набирает заряд.

    Стандартные кремниевые фотоэлектрические преобразователи являются однопереходными элементами. Переток в них электронов происходит только через один p-n-переход с ограниченной по энергетике фотонов зоной этого перехода.

    То есть каждый такой фотоэлемент способен генерировать электроэнергию только от узкого спектра солнечного излучения. Вся остальная энергия пропадает впустую. Поэтому-то и эффективность у ФЭП так низка.

    Чтобы повысить КПД солнечных батарей, кремниевые полупроводниковые элементы для них в последнее время стали делать многопереходными (каскадными). В новых ФЭП переходов уже несколько. Причем каждый из них в этом каскаде рассчитан на свой спектр солнечных лучей.

    Суммарная эффективность преобразования фотонов в электроток у таких фотоэлементов в итоге возрастает. Но и цена их значительно выше. Здесь либо простота изготовления с невысокой себестоимостью и низким КПД, либо более высокая отдача вкупе с высокой стоимостью.

    При работе фотоэлемент и вся батарея постепенно греется. Вся та энергия, что не пошла на генерацию электротока, трансформируется в тепло. Часто температура на поверхности гелиопанели поднимается до 50–55 °С. Но чем она выше, тем менее эффективно работает фотогальванический элемент.

    В итоге одна и та же модель солнечной батареи в жару генерирует тока меньше, нежели в мороз. Максимум КПД фотоэлементы показывают в ясный зимний день. Тут сказываются два фактора – много солнца и естественное охлаждение.

    При этом если на панель будет падать снег, то электроэнергию она генерировать все равно продолжит. Более того, снежинки даже не успеют на ней особо полежать, растаяв от тепла нагретых фотоэлементов.

    Эффективность батарей гелиосистемы

    Один фотоэлемент даже в полдень при ясной погоде выдает совсем немного электроэнергии, достаточной разве что для работы светодиодного фонарика.

    Чтобы повысить выходную мощность, несколько ФЭП объединяют по параллельной схеме для увеличения постоянного напряжения и по последовательной для повышения силы тока.

    Эффективность солнечных панелей зависит от:

    • температуры воздуха и самой батареи;
    • правильности подбора сопротивления нагрузки;
    • угла падения солнечных лучей;
    • наличия/отсутствия антибликового покрытия;
    • мощности светового потока.

    Чем ниже температура на улице, тем эффективней работают фотоэлементы и гелиобатарея в целом. Здесь все просто. А вот с расчетом нагрузки ситуация сложнее. Ее следует подбирать исходя из выдаваемого панелью тока. Но его величина меняется в зависимости от погодных факторов.

    Постоянно отслеживать параметры солнечной батареи и вручную корректировать ее работу проблематично. Для этого лучше воспользоваться контроллером управления, который в автоматическом режиме сам подстраивает настройки гелиопанели, чтобы добиться от нее максимальной производительности и оптимальных режимов работы.

    Идеальный угол падения лучей солнца на гелиобатарею – прямой. Однако при отклонении в пределах 30-ти градусов от перпендикуляра эффективность панели падает всего в районе 5%. Но при дальнейшем увеличении этого угла все большая доля солнечного излучения будет отражаться, уменьшая тем самым КПД ФЭП.

    Если от батареи требуется, чтобы она максимум энергии выдавала летом, то ее следует сориентировать перпендикулярно к среднему положению Солнца, которое оно занимает в дни равноденствия по весне и осени.

    Для московского региона – это приблизительно 40–45 градусов к горизонту. Если максимум нужен зимой, то панель надо ставить в более вертикальном положении.

    И еще один момент – пыль и грязь сильно снижают производительность фотоэлементов. Фотоны сквозь такую “грязную” преграду просто не доходят до них, а значит и преобразовывать в электроэнергию нечего. Панели необходимо регулярно мыть либо ставить так, чтобы пыль смывалась дождем самостоятельно.

    Некоторые солнечные батареи имеют встроенные линзы для концентрирования излучения на ФЭП. При ясной погоде это приводит к повышению КПД. Однако при сильной облачности эти линзы приносят только вред.

    Если обычная панель в такой ситуации будет продолжать генерировать ток пусть и в меньших объемах, то линзовая модель работать прекратит практически полностью.

    Солнце батарею из фотоэлементов в идеале должно освещать равномерно. Если один из ее участков оказывается затемненным, то неосвещенные ФЭП превращаются в паразитную нагрузку. Они не только в подобной ситуации не генерируют энергию, но еще и забирают ее у работающих элементов.

    Панели устанавливать надо так, чтобы на пути солнечных лучей не оказалось деревьев, зданий и иных преград.

    Схема электропитания дома от солнца

    Система солнечного электроснабжения включает:

    1. Гелиопанели.
    2. Контроллер.
    3. Аккумуляторы.
    4. Инвертор (трансформатор).

    Контроллер в этой схеме защищает как солнечные батареи, так и АКБ. С одной стороны он препятствует протеканию обратных токов по ночам и в пасмурную погоду, а с другой – защищает аккумуляторы от чрезмерного заряда/разряда.

    Для трансформации постоянного тока на 12, 24 либо 48 Вольта в переменный 220-вольтовый нужен инвертор. Автомобильные аккумуляторы применять в такой схеме не рекомендуется из-за их неспособности выдерживать частые перезарядки. Лучше всего потратиться и приобрести специальные гелиевые AGM либо заливные OPzS АКБ.

    Выводы и полезное видео по теме

    Принципы работы и схемы подключения солнечных батарей не слишком сложны для понимания. А с собранными нами ниже видеоматериалами разобраться во всех тонкостях функционирования и установки гелиопанелей будет еще проще.

    Доступно и понятно, как работает фотоэлектрическая солнечная батарея, во всех подробностях:

    Как устроены солнечные батареи смотрите в следующем видеоролике:

    Сборка солнечной панели из фотоэлементов своими руками:

    Каждый элемент в системе солнечного электроснабжения коттеджа должен быть подобран грамотно. Неизбежные потери мощности происходят на аккумуляторах, трансформаторах и контроллере. И их обязательно надо сократить до минимума, иначе и так достаточно низкая эффективность гелиопанелей окажется сведена вообще к нулю.

    В ходе изучения материала появились вопросы? Или вы знаете ценную информацию по теме статьи и можете сообщить ее нашим читателям? Пожалуйста, оставляйте свои комментарии в расположенном ниже блоке.

    Солнечные батареи: как это работает

    Поделитесь в соцсетях:

    • Нажмите, чтобы поделиться на Twitter (Открывается в новом окне)
    • Нажмите здесь, чтобы поделиться контентом на Facebook. (Открывается в новом окне)
    • Нажмите, чтобы поделиться на LinkedIn (Открывается в новом окне)
    • Нажмите, чтобы поделиться записями на Pocket (Открывается в новом окне)
    • Нажмите, чтобы поделиться в Telegram (Открывается в новом окне)

    Солнечные батареи уже сейчас используются для питания самой разнообразной техники: от мобильных гаджетов до электромобилей. Как устроены, какими бывают и на что способны современные солнечные батареи, вы узнаете из этой статьи.

    История создания

    Так исторически сложилось, что солнечные батареи – это уже вторая попытка человечества обуздать безграничную энергию Солнца и заставить ее работать себе на благо. Первыми появились солнечные коллекторы (солнечные термальные электростанции), в которых электричество вырабатывает нагретая до температуры кипения под сконцентрированными солнечными лучами вода.

    Солнечная термальная электростанция в испанском городе Севилья

    Солнечные же батареи производят непосредственно электричество, что намного эффективнее. При прямой трансформации теряется значительно меньше энергии, чем при многоступенчатой, как у коллекторов (концентрация солнечных лучей, нагрев воды и выделение пара, вращение паровой турбины и только в конце выработка электричества генератором).

    Современные солнечные батареи состоят из цепи фотоэлементов – полупроводниковых устройств, преобразующих солнечную энергию напрямую в электрический ток. Процесс преобразования энергии солнца в электрической ток называется фотоэлектрическим эффектом.

    Данное явление открыл французский физик Александр Эдмон Беккерель в середине XIX века. Первый же действующий фотоэлемент спустя полвека создал русский ученый Александр Столетов. А уже в двадцатом столетии фотоэлектрический эффект количественно описал не требующий представления Альберт Эйнштейн.

    Беккерель, Столетов и Эйнштейн – именно этому «трио» ученых мы обязаны созданием солнечных батарей

    Принцип работы

    Полупроводник – это такой материал, в атомах которого либо есть лишние электроны (n-тип), либо наоборот, их не хватает (p-тип). Соответственно, полупроводниковый фотоэлемент состоит из двух слоев с разной проводимостью. В качестве катода используется n-слой, а в качестве анода – p-слой.

    Лишние электроны из n-слоя могут покидать свои атомы, тогда как p-слой эти электроны захватывает. Именно лучи света «выбивают» электроны из атомов n-слоя, после чего они летят в p-слой занимать пустующие места. Таким способом электроны бегут по кругу, выходя из p-слоя, проходя через нагрузку (в данном случае аккумулятор) и возвращаясь в n-слой.

    Схема работы фотоэлемента

    Первым в истории фотоэлектрическим материалом был селен. Именно с его помощью производили фотоэлементы в конце XIX и начале XX веков. Но учитывая крайне малый КПД (менее 1 процента), селену сразу же начали искать замену.

    Массовое же производство солнечных батарей стало возможным после того как телекоммуникационная компания Bell Telephone разработала фотоэлемент на основе кремния. Он до сих пор остается самым распространенным материалом в производстве солнечных батарей. Правда, очистка кремния – процесс крайне затратный, а потому мало-помалу пробуются альтернативы: соединения меди, индия, галлия и кадмия.

    Селен – исторически первый, а кремний – самый массовый материал в производстве фотоэлементов

    Понятное дело, что мощности отдельных фотоэлементов недостаточно, чтобы питать мощные электроприборы. Поэтому их объединяют в электрическую цепь, тем самым формируя солнечную батарею (другое название – солнечная панель).

    На каркас солнечной батареи фотоэлементы крепятся таким образом, чтобы их в случае выхода из строя можно было заменять по одному. Для защиты от воздействия внешних факторов всю конструкцию покрывают прочным пластиком или закаленным стеклом.

    Мобильный телефон Samsung E1107 оснащен солнечной батареей

    Существующие разновидности

    Классифицируются солнечные батареи по мощности вырабатываемого электричества, которая зависит от площади панели и ее конструкции. Мощность потока солнечных лучей на экваторе достигает 1 кВт, тогда как в наших краях в облачную погоду она может опускаться ниже 100 Вт. В качестве примера возьмем средний показатель (500 Вт) и в дальнейших расчетах будем отталкиваться от него.

    Наручные часы Citizen Eco-Drive с солнечной батареей вместо циферблата

    Самым низким коэффициентом фотоэлектрического преобразования обладают аморфные, фотохимические и органические фотоэлементы. У первых двух типов он равен примерно 10 процентам, а у последнего – всего лишь 5 процентам. Это означает, что при мощности солнечного потока в 500 Вт солнечная панель площадью один квадратный метр будет вырабатывать соответственно 50 и 25 Вт электроэнергии.

    Монтаж солнечных панелей на крыше жилого дома

    В противовес вышеупомянутым типам фотоэлементов выступают солнечные батареи на основе кремниевых полупроводников. Коэффициент фотоэлектрического преобразования на уровне 20%, а при благоприятных условиях — и 25% для них привычное дело. Как результат, мощность метровой солнечной панели может достигать 125 Вт.

    Гоночный электромобиль Honda Dream на солнечных батареях появился еще в 1996 г.

    Конкурировать по мощности с кремниевыми солнечными батареями способны разве что решения на основе арсенида галлия. Используя это соединение, инженеры научились создавать многослойные фотоэлементы с КФП свыше 30% (до 150 Вт электричества с квадратного метра).

    Портативная солнечная панель Solarland мощностью 130 Вт и стоимостью $860

    Если же говорить о площади солнечных батарей, то существуют как миниатюрные «пластинки» мощностью до 10 Вт (для частой транспортировки), так и широченные «листы» на 200 Вт и более (сугубо для стационарного использования).

    Беспилотный самолет, разработанный NASA Ames Research Center, способен на солнечной энергии пролететь от восточного побережья США до западного

    На работу солнечных батарей может негативно влиять ряд факторов. К примеру, с ростом температуры снижается КФП фотоэлементов. Это при том, что солнечные батареи как раз-то и устанавливают в жарких солнечных странах. Получается своеобразная палка о двух концах.

    Солнечную батарею Voltaic можно носить у себя за спиной

    А если затемнить часть солнечной панели, то неактивные фотоэлементы не только прекращают вырабатывать электричество, но и становятся дополнительной, зловредной нагрузкой.

    «Солнечное дерево – культурный и одновременно научный символ австрийского городка Глайсдорф

    Крупнейшие производители

    Лидерами глобального производства солнечных батарей являются компании Suntech, Yingli, Trina Solar, First Solar и Sharp Solar. Первые три представляют Китай, четвертая – США, а пятая, как нетрудно догадаться, является подразделением японской корпорации Sharp.

    Гольфкар на солнечных батареях – бесшумное и экологически чистое средство передвижения

    Американская компания First Solar не только производит солнечные батареи, но и принимает непосредственное участие в проектировании и строительстве солнечных электростанций. Мощнейшая в мире СЭС Агуа-Калиенте, которая находится в штате Аризона, США – дело рук инженеров First Solar.

    Крупнейшую же украинскую СЭС «Перово» строила и снабжала солнечными панелями австрийская компания Activ Solar.

    Китайская же компания Suntech прославилась тем, что готовила к летней Олимпиаде-2008 футбольный стадион под названием «Птичье гнездо» в Пекине. Вырабатываемая на протяжении дня с помощью солнечных батарей электроэнергия аккумулируется, а затем используется для освещения стадиона, полива травы на футбольном поле и работы телекоммуникационного оборудования.

    Национальный стадион в Пекине густо усеян солнечными батареями производства Suntech

    Выводы

    Еще два десятилетия назад диковинкой казались микрокалькуляторы с фотоэлементами, что позволяло не менять в них «батарейку-таблетку» годами. Сейчас же мобильные телефоны со встроенной в заднюю крышку солнечной панелью никого не удивляют. А ведь это мелочь в сравнении с автомобилями и самолетами (пусть и беспилотными), которые научились передвигаться при помощи одной лишь солнечной энергии.

    Будущее солнечных батарей видится точно таким же светлым, как само солнце. Хочется верить, что именно солнечные батареи позволят наконец-то вылечить смартфоны и планшеты от «розеткозависимости».

    Как работают солнечные батареи?

    Солнечная энергия удивительна. В среднем на каждый квадратный метр поверхности Земли поступает 164 Вт солнечной энергии (цифру мы объясним более подробно ниже). Другими словами, вы могли бы поставить действительно мощную (150 Вт) настольную лампу на каждый квадратный метр поверхности Земли и осветить всю планету энергией Солнца! Или, другими словами, если бы мы покрыли всего один процент пустыни Сахара солнечными батареями, мы могли бы генерировать достаточно электричества, чтобы питать весь мир. Это хорошо в солнечной энергии: ее очень много — гораздо больше, чем мы могли бы когда-либо использовать.

    Но есть и обратная сторона. Энергия, которую посылает Солнце, прибывает на Землю как смесь света и тепла . И то, и другое невероятно важно: свет заставляет растения расти, обеспечивая нас пищей, в то время как тепло сохраняет нас достаточно теплыми, чтобы выжить, — но мы не можем использовать ни солнечный свет, ни тепло непосредственно для управления телевизором или автомобилем. Нам нужно найти какой-то способ преобразования солнечной энергии в другие виды энергии, которые мы могли бы использовать более легко, например, электричество. И это именно то, что делают солнечные элементы.

    Чтобы узнать, как работают солнечные панели, вам нужно понять, как они сделаны. Многие солнечные панели используют кремний, один из самых распространенных элементов планеты. Но поскольку создание кристаллов кремния подходящего качества сложно и дорого, домашние солнечные системы обычно строятся из аналогичных, но менее дорогих материалов, таких как медь, индий, галлий и селенид (CIGS). Они не так эффективны, как высококачественный кремний, но все же обеспечивают достаточную мощность при разумных затратах.

    Кремний — это материал, из которого сделаны транзисторы (крошечные переключатели) в микросхемах, и солнечные элементы работают аналогичным образом. Кремний — это материал, называемый полупроводником . Некоторые материалы, особенно металлы , позволяют электричеству проходить через них очень легко; они называются проводниками. Другие материалы, такие как пластик и дерево , вообще не позволяют электричеству течь через них; они называются изоляторами. Полупроводники, такие как кремний, не являются ни проводниками, ни изоляторами: они обычно не проводят электричество, но при определенных обстоятельствах мы можем заставить их это делать.

    Солнечный элемент представляет собой сэндвич из двух разных слоев кремния, которые были специально обработаны или легированы, чтобы они могли электричеством проходить через них определенным образом. Нижний слой легирован, поэтому в нем слишком мало электронов. Он называется кремнием p-типа или положительного типа (потому что электроны заряжены отрицательно, и их в этом слое слишком мало). Верхний слой легирован противоположным образом, чтобы дать ему немного слишком много электронов. Это называется кремнием n-типа или отрицательного типа.

    Когда мы помещаем слой кремния n-типа на слой кремния p-типа, на стыке двух материалов создается барьер (важнейшая граница, где встречаются два вида кремния). Никакие электроны не могут пересечь барьер, поэтому, даже если мы подключим этот кремниевый бутерброд к фонарику, ток не будет течь: лампочка не загорится. Но если мы проливаем свет на бутерброд, происходит нечто замечательное. Мы можем думать о свете как о потоке энергичных «легких частиц», называемых фотонами., Когда фотоны попадают в наш сэндвич, они отдают свою энергию атомам в кремнии. Поступающая энергия выбивает электроны из нижнего слоя p-типа, поэтому они перепрыгивают через барьер к слою n-типа выше и текут по кругу. Чем больше света светит, тем больше электронов подпрыгивает и течет больше тока.

    Это то, что мы подразумеваем под фотоэлектрическим напряжением, создающим свет, и это один из видов того, что ученые называют фотоэлектрическим эффектом .

    Видимый солнечный свет состоит из невидимых частиц, называемых фотонами. У них есть энергия, но нулевая масса покоя. Когда фотоны сталкиваются с другими частицами, их энергия преобразуется в другие формы в зависимости от вида атомов, к которым они прикасаются. Большинство столкновений создают только тепло.

    Но электричество также может быть произведено, когда фотоны делают электроны в атомах настолько возбужденными, что они отрываются и перемещаются свободно. Кремниевые электроны n-типа ищут электроны в кремнии p-типа, чтобы заменить отсутствующие электроны и поток между двумя полученными типами.

    Замечательные свойства полупроводников, таких как кремний, позволяют поддерживать электрический дисбаланс. Это означает постоянную подачу электричества, пока фотоны попадают на солнечные панели. Ток собирается по проводам и распространяется по всей системе.

    Солнечный элемент представляет собой сэндвич из кремния n-типа (синий) и кремния p-типа (красный). Он генерирует электричество, используя солнечный свет, чтобы электроны перепрыгивали через соединение между различными ароматами кремния:

    • Когда солнечный свет падает на клетку, фотоны (легкие частицы) бомбардируют верхнюю поверхность.
    • Фотоны (желтые капли) несут свою энергию через клетку.
    • Фотоны отдают свою энергию электронам (зеленым пятнам) в нижнем слое p-типа.
    • Электроны используют эту энергию, чтобы перепрыгнуть через барьер в верхний слой n-типа и уйти в контур.
    • Обтекание цепи электронами заставляет лампу загореться.

    Основное правило физики, называемое законом сохранения энергии, гласит, что мы не можем волшебным образом создавать энергию или заставить ее исчезнуть в воздухе; все, что мы можем сделать, это преобразовать его из одной формы в другую. Это означает, что солнечный элемент не может производить больше электрической энергии, чем он получает каждую секунду в качестве света. На практике, как мы вскоре увидим, большинство клеток преобразует около 10–20 процентов энергии, которую они получают, в электричество. Типичный однопереходный кремниевый солнечный элемент имеет теоретический максимальный КПД около 30 процентов, известный как предел Шокли-Кейссера, Это в основном потому, что солнечный свет содержит широкую смесь фотонов с различными длинами волн и энергией, и любой однопереходный солнечный элемент будет оптимизирован для захвата фотонов только в пределах определенной полосы частот, тратя впустую остальное. Некоторые из фотонов, попадающих на солнечный элемент, не имеют достаточно энергии, чтобы выбить электроны, поэтому они эффективно тратятся впустую, в то время как у некоторых слишком много энергии, а избыток также теряется. Самые лучшие, передовые лабораторные ячейки могут управлять 46-процентной эффективностью в абсолютно идеальных условиях, используя множество соединений для захвата фотонов с различной энергией.

    • Тень. Затененные солнечные панели не будут вырабатывать столько же энергии, сколько панели на полноценном солнце. Если ваша крыша лишена солнечного света, затенена необрезанными деревьями или зданиями, солнечная энергия может оказаться не лучшим выбором.
    • Сезонность. Как и погода, выработка солнечной энергии меняется день ото дня и месяц за месяцем. Облачный зимний день не будет таким же продуктивным, как солнечный летний. Но важно сосредоточиться на круглогодичной картине. Например, снег иногда может отражать свет и улучшать фотоэлектрические характеристики. Таким образом, в действительности холодный месяц станет солнечным антагонистом, только если слякоть не покроет панели.
    • Наклон. Солнечные панели должны иметь хороший наклон. Направление, в котором стоит ваш дом, его расположение, и даже уклон крыши, оказывают существенное влияние на эффективность работы солнечной солнечной системы. В идеале солнечные панели должны находиться под тем же углом, что и широта, на которой они установлены. Отклонения от 30 до 45 градусов обычно работают хорошо в большинстве сценариев.
    • Азимут. Угол солнечного азимута — это направление компаса, откуда идет солнечный свет. В полдень солнечный свет исходит с юга в северном полушарии и с севера в южном полушарии. Неправильный угол азимута может снизить эффективность солнечной панели дома до 35%. Азимут нуля (обращенный к экватору) обычно является лучшим выбором.

    Реальные бытовые солнечные панели могут достичь эффективности около 15 процентов, дать процентное соотношение здесь или там, и это вряд ли станет намного лучше. Солнечные элементы первого поколения с однопереходными солнечными батареями не будут приближаться к 30-процентному КПД ограничения Шокли-Кейссера, не говоря уже о лабораторных показателях в 46 процентов. Все виды неприятных реальных факторов будут влиять на номинальную эффективность, включая конструкцию панелей, то, как они расположены и под каким углом находятся, попадают ли они в тень, в какой чистоте вы их держите, насколько они горячие (повышение температуры имеют тенденцию снижать их эффективность), и вентилируются ли они (позволяя воздуху циркулировать внизу), чтобы они оставались прохладными.

    Большинство солнечных панелей, которые вы видите сегодня на крышах домов, по сути, представляют собой просто кремниевые бутерброды, специально обработанные («легированные»), чтобы сделать их лучшими электрическими проводниками. Ученые называют эти классические солнечные элементы первым поколением, в значительной степени отличая их от двух разных, более современных технологий, известных как второе и третье поколение. Так в чем же разница?

    Около 90 процентов солнечных панелей в мире изготовлены из пластин кристаллического кремния (сокращенно c-Si), нарезанных из крупных слитков, которые выращиваются в суперчистых лабораториях, процесс которых может занять до месяца. Слитки либо принимают форму монокристаллов (монокристаллический или моно-Si), либо содержат несколько кристаллов (поликристаллический, мульти-Si или поли-c-Si). Солнечные элементы первого поколения работают так, как мы показали выше: они используют одно простое соединение между кремниевыми слоями n-типа и p-типа, которые вырезаны из отдельных слитков. Таким образом, слиток n-типа можно получить, нагревая куски кремния с небольшим количеством фосфора, сурьмы или мышьяка в качестве легирующей добавки, в то время как слиток р-типа будет использовать бор в качестве легирующей примеси. Ломтики кремния n-типа и p-типа затем сливаются для соединения. Добавлены еще несколько наворотов (например, антиотражающее покрытие, которое улучшает поглощение света и придает фотоэлектрическим элементам их характерный синий цвет, защитное стекло на передней панели и пластиковая подложка, а также металлические соединения, позволяющие подключить элемент к цепи), но простой pn-переход — это сущность большинства солнечных панелей.

    Классические солнечные элементы представляют собой относительно тонкие пластины — обычно их доля составляет миллиметровую глубину (около 200 микрометров, 200 микрон или около того). Но они являются абсолютными плитами по сравнению с элементами второго поколения, широко известными как тонкопленочные солнечные элементы(TPSC) или тонкопленочные фотоэлектрические элементы (TFPV), которые снова примерно в 100 раз тоньше (несколько микрометров или миллионные доли метра глубиной). Хотя большинство из них все еще сделаны из кремния (другая форма, известная как аморфный кремний, a-Si, в которой атомы расположены случайным образом, а не точно упорядочены в правильной кристаллической структуре), некоторые сделаны из других материалов, в частности, теллурида кадмия (Cd -Te) и диселенид меди-индия-галлия (CIGS). Поскольку они чрезвычайно тонкие, легкие и гибкие, солнечные элементы второго поколения можно ламинировать на окнах, окнах в крыше, черепице и всех видах «подложек» (материалов подложки), включая металлы , стекло и полимеры (пластики). То, что элементы второго поколения приобретают в гибкости, они жертвуют эффективностью: классические солнечные элементы первого поколения по-прежнему превосходят их. Таким образом, в то время как первоклассные ячейки первого поколения могут достигать эффективности 15–20 процентов, аморфный кремний изо всех сил пытается достичь более 7 процентов, а лучшие тонкопленочные ячейки Cd-Te справляются только с 11 процентами, а ячейки CIGS не лучше чем 7–12 процентов. Это одна из причин, почему, несмотря на их практические преимущества, элементы второго поколения до сих пор оказывали относительно небольшое влияние на солнечный рынок.

    Новейшие технологии сочетают в себе лучшие черты ячеек первого и второго поколения. Как и клетки первого поколения, они обещают относительно высокую эффективность (30 процентов и более). Как и элементы второго поколения, они, скорее всего, будут изготовлены из материалов, отличных от «простого» кремния, таких как аморфный кремний, органические полимеры (создание органических фотоэлектрических элементов), кристаллы перовскита, и имеют несколько соединений (из нескольких слоев) различных полупроводниковых материалов. В идеале это сделало бы их дешевле, эффективнее и практичнее, чем клетки первого или второго поколения.

    В теории огромное количество. Давайте на время забудем солнечные элементы и просто рассмотрим чистый солнечный свет. До 1000 Вт необработанной солнечной энергии попадает на каждый квадратный метр Земли, направленной прямо с Солнца (это теоретическая мощность прямого солнечного света в полдень в безоблачный день — солнечные лучи излучают перпендикулярно поверхности Земли и дают максимальное освещение или инсоляцию), как это технически известно. На практике, после того, как мы скорректировали наклон планеты и время суток, лучшее, что мы можем получить, это, возможно, 100–250 Вт на квадратный метр в типичных северных широтах (даже в безоблачный день). Это составляет примерно 2–6 кВт/ч в день (в зависимости от того, находитесь ли вы в северном регионе, например, в Канаде или Шотландии, или наоборот в южном полушарии, например, в Аризоне или Мексике). Умножение производства на целый год дает нам где-то между 700 и 2500 кВт/ч на квадратный метр (700–2500 единиц электроэнергии). Более жаркие регионы, очевидно, обладают гораздо большим солнечным потенциалом: например, на Ближнем Востоке ежегодно получается на 50–100 процентов больше солнечной энергии, чем в Европе.

    К сожалению, типичные солнечные элементы эффективны только на 15 процентов, поэтому мы можем захватить только часть этой теоретической энергии. Вот почему солнечные панели должны быть такими большими: количество энергии, которую вы можете производить, очевидно, напрямую связано с тем, сколько места вы можете позволить себе покрыть панелями. Один солнечный элемент (примерно размером с компакт-диск) может генерировать около 3–4,5 Вт; типичный солнечный модуль, изготовленный из массива около 40 элементов (5 рядов по 8 элементов), может генерировать около 100–300 Вт; поэтому несколько солнечных панелей, каждая из которых состоит из 3–4 модулей, могут генерировать абсолютный максимум в несколько киловатт (вероятно, достаточно для удовлетворения пиковой потребности дома в электроэнергии).

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: