Как работает тепловой насос

Тепловой насос для отопления дома, принцип работы и виды

Тепловой насос — это альтернативный источник создания тепла для обогрева дома. Данное устройство преобразует низкопотенциальную тепловую энергию источника (земли, воды, воздуха) в высокотемпературное тепло. Тепловые насосы, преобразующие энергию земли являются наиболее распространенными.

Теорию теплового насоса разработал в 1852 году лорд Кельвин. В 1866 на основе данных изысканий Иоахимстале Петер фон Риттингер создал устройство, и использовал его для повышения эффективности выпаривания соли. В современной форме тепловой насос создал американец Роберт Уэббер в середине ХХ века. Он начал использовать тепловую энергию земли для отопления дома. Для этого под грунтом укладывались медные трубы, где циркулировал забирающий при испарении земное тепло фреон. Тепло это газ отдавал в доме, и, конденсируясь, опять шел на циркуляцию в землю.

В данном обзоре рассмотрены основные виды систем с использованием теплового насоса и принцип их работы.

Принцип действия теплового насоса

Принцип действия тепловых насосов схож с работой холодильных машин, где производиться получение холода путем отбора теплоты из какого-либо объема испарителем, а конденсатор осуществляет сброс теплоты в окружающую среду. В тепловом насосе же процессы происходят в обратном порядке — в этом и заключается основное различие.

Устройство теплового насоса:

Тепловой насос состоит из двух теплообменников — испарителя и конденсатора. В испарителе с помощью испаряющегося хладагента поддерживается температура ниже температуры того тела (грунт, вода или атмосферный воздух), от которого требуется отобрать тепло. В конденсаторе поддерживается температура выше температуры другого тела (система отопления дома), которому тепло передается.
Разные уровни температур в первом и втором теплообменниках обеспечиваются с помощью циркулирующего между ними хладагента, способного изменяться от жидкого к газообразному состоянию и обратно при различных температурах.

Тепловым насосам для работы требуется электроэнергия. Ориентировочно, затратив 1 кВт электроэнергии на работу компрессора и насосов, можно получить 3 — 5 кВт тепловой энергии. В летний период, при наличии реверсивного режима работы, тепловой насос может охлаждать воздух в помещении.

Эффективность тепловых насосов зависит от способа обогревания и качества утепления дома. Наиболее рациональным является применение низкотемпературных систем отопления (один из примеров — система теплый пол). Связано это с низкотемпературным режимом нагревания воды тепловым насосом. И, если бы в данном случае использовались традиционные радиаторы, то они должны быть увеличенных размеров.

Преимущества тепловых насосов

У тепловых насосов есть ряд существенных преимуществ:

  • В первую очередь стоит отметить долговечность таких систем. Тепловые насосы могут работать 20-25 лет, после чего компрессор насоса может быть заменен и система продолжит свою работу.
  • Кроме того, системы тепловых насосов безопасны, поскольку отсутствуют топливо, открытый огонь и опасные газы.
  • Следующий положительный фак — экологическая чистота системы, которая в процессе функционирования не образует вредные окислы, а применяемые в них фреоны не содержат хлороуглеродов.

Основным недостатком системы является высокая стоимость. В связи с этим, выбирая тепловой насос, не стоит заказывать оборудование максимальной мощности. Это неоправданно дорого и не имеет смысла, так как фактическое количество холодных дней обычно не превышает двух-трех недель за год. Оптимальный тепловой насос должен иметь мощность, равную 60 — 80% от максимальной. А для покрытия пиковых нагрузок можно установить резервный котел с традиционным видом топлива либо использовать встроенные в тепловые насосы ТЭНы.

Виды тепловых насосов

Естественным источником энергии для теплового насоса может быть:

  • Тепло земли (тепло грунта).
  • Подземные воды (грунтовые, артезианские, термальные).
  • Наружный воздух.

Искусственные источники низкопотенциального тепла:

  • Удаляемый вентиляционный воздух.
  • Канализационные стоки (сточные воды).
  • Промышленные сбросы.
  • Тепло технологических процессов.
  • Бытовые тепловыделения

И в зависимости от источников энергии тепловые насосы подразделяются на следующие типы:

  • Вода — вода.
  • Вода — воздух.
  • Грунт — вода.
  • Грунт — воздух.
  • Воздух — вода.
  • Воздух — воздух.

Тепловые насосы типа «грунт – вода», «грунт – воздух»

На глубине ниже 10 м температура грунта практически постоянна в течение всего года. Насосы типа «грунт – вода» используют тепловую энергию земли и передают ее для обогрева дома через систему водяного отопления. В тепловых насосах, работающих по принципу «грунт – воздух», тепловая энергия также отбирается у грунта и через компрессор напрямую передается воздуху, который используется для отопления зданий.

Механизм теплообмена следующий:

  • Энергия, отобранная от земли, аккумулируется носителем, в качестве которого чаще всего используется незамерзающая жидкость — антифриз («рассол»).
  • Опускаясь вниз по теплообменнику, «рассол» отбирает у грунта тепло (примерно 3 — 4 °С) и передает его фреону, циркулирующему во внутреннем контуре теплового насоса.
  • Фреон, проходя через каналы испарителя, закипает и испаряется.
  • Образовавшийся при этом пар поступает в компрессор, сжимается там (при этом температура его повышается), после чего горячий и сжатый пар направляется в теплообменник конденсатора, где охлаждается, передавая тепло воде.
  • Вода используется в системе отопления и горячего водоснабжения, а жидкий фреон стекает на дно конденсатора, откуда, за счет перепада давлений, через дроссель возвращается в испаритель.
  • Данный порядок цикличен — повторяется снова и снова.

Теплообменник в тепловых насосах типа «грунт – вода» бывает двух видов:

  1. Горизонтальный коллектор.
  2. Вертикальный коллектор.

Горизонтальный коллектор

При данной реализации отбирается тепло, накопленное в верхних слоях почвы в результате солнечного излучения, и коллектор представляет собой несколько контуров пластиковых труб, уложенных под слоем грунта.

Для эффективной работы системы, исходя из особенностей грунта, его теплопроводности и геометрии участка, выбирается определенная схема укладки труб – петля, змейка, зигзаг, плоские и винтовые спирали разных форм. Также, эффективность теплообмена увеличивается на влажных грунтах и уменьшается на сухих песчаных участках.

Для отопления дома площадью 70 — 100 м² достаточно уложить приблизительно 200 — 320 м трубопровода несколькими петлями-контурами. Для этого нужен участок площадью примерно 150 — 200 м², то есть в 1,5 — 2 раза больше, чем отапливаемая площадь дома. Дальнейшее использование такого участка над коллектором возможно только в качестве лужайки или цветника.

Читайте также:
Как получить 12 Вольт из 5, 24, 220 Вольт - обзор способов

Главное преимущество использования горизонтального коллектора в связке с тепловым насосом — простота монтажа и то, что при прочих равных условиях работы по монтажу оборудования обойдутся немного дешевле, чем бурение скважин.

Вертикальный коллектор

Грунтовые зонды вертикального коллектора представляют собой систему длинных труб, опускаемых в скважины глубиной 50-200 м.

Пространство в скважине вокруг зонда заполняется буровым раствором или цементно-бетонной смесью для защиты труб от повреждений и улучшения теплопередачи. Для дома площадью 70 — 100 м² понадобится 2 — 3 скважины глубиной около 50 м. Располагать скважины следует не ближе 2 м от стены дома, чтобы не повредить фундамент. Также скважины не должны находиться на одной линии течения подземных вод — иначе эффективность теплового насоса уменьшится.

Для вертикального коллектора не требуется большой участок, а на глубинах от 50 м температура грунта выше, потому эффективность теплообмена при использовании данной системы выше на 15 — 20%, чем у горизонтального коллектора.

Тепловые насосы типа «воздух – вода», «воздух – воздух»

Тепловой насос типа «воздух – воздух» и «воздух – вода» схожи по принципу работы с кондиционерами. Они стоят дешевле, но проигрывают другим видам насосов по универсальности, применяясь преимущественно для нагревания горячей воды.

Такие устройства имеют два варианта исполнения:

  1. Сплит система состоит из двух блоков, соединенных инженерными коммуникациями. В состав наружного входят мощный вентилятор и испаритель, а внутренний содержит конденсатор и автоматику. При этом компрессор может располагаться как во внутреннем блоке, так и в наружном, чтобы избежать шума в помещении.
  2. В моно системе все элементы собираются в одном корпусе и монтируются либо в доме, соединяясь с улицей гибким воздуховодом, либо снаружи.

Тепловые насосы типа «вода – вода»

При соседстве с домом реки или пруда можно использовать тепловой насос, работающий по схеме «вода – вода». Для этого из водоема отбирается мощным насосом вода, которая прокачивается через первичный теплообменник теплового насоса, отдавая свою тепловую энергию фреону, и сбрасывается обратно в водоем.

Тепловой насос типа вода — вода наиболее экономичный. Однако, из-за загрязненности используемой воды необходимо предпринимать дополнительные меры для ее предварительной очистки перед подачей в тепловой насос.

Пример схемы обвязки теплового насоса вода — вода:

  1. Теплообменник для пассивного охлаждения
  2. Расширительный бак внешнего контура теплового насоса
  3. Коллектор потолочного охлаждения
  4. Расширительный бак системы отопления
  5. Группа безопасности котла (теплового насоса)
  6. Расширительный бак для ГВС
  7. Резервный котел (высокотемпературный) с насосом и группой безопасности
  8. Узел подмеса системы отопления
  9. Термостатический клапан радиатора отопления
  10. Буфер (тепловой аккумулятор)
  11. Основной насос системы отопления
  12. Тепловой насос вода-вода со встроенными циркуляционными насосами
  13. Бойлер косвенного нагрева для ГВС
  14. Насос рециркуляции ГВС
  15. Коллектор водоснабжения
  16. Коллектор теплых полов
  17. Коллектор радиаторов

Подведем итог. Первоначальные затраты на систему отопления с тепловым насосом и ее обустройство достаточно высоки. Но, с учетом низких расходов на отопление, со временем можно покрыть первоначальные вложения и продолжить использование альтернативных источников для обогрева дома.

Тепловой насос для отопления дома: принцип работы, разновидности и использование

В условиях ухудшения экологической обстановки в мире и (что более актуально для рядового потребителя) стремительного роста тарифов на газ и электричество все больше европейцев старается внедрить в свою повседневную жизнь системы, использующие альтернативные источники энергии. Один из вариантов подобных систем – так называемый тепловой насос, посредством которого можно отапливать свое жилище в зимний период и нагревать воду для бытовых нужд, расходуя на это минимум электроэнергии.

В домах наших соотечественников в последние годы тоже все чаще можно встретить это чудо инженерной мысли. Конечно, для россиян проблема высоких цен на традиционные энергоносители пока стоит не так остро, как в Европе, но, во-первых, это лишь до поры до времени, а во-вторых, не хочется отставать от цивилизованного мира…

Итак, тепловой насос… Что это такое? На чем основан принцип его действия? Откуда, куда и как он перекачивает тепло? Давайте разбираться.

Принцип работы теплового насоса

Принцип действия тепловых насосов основан на способности вещества (хладагента) поглощать или отдавать тепло при изменении агрегатного состояния. По своей сути такие насосы мало чем отличаются от холодильных установок. (Это странное, на первый взгляд, утверждение нисколько вас не удивит, если вы хоть раз дотрагивались до горячей задней стенки обычного бытового холодильника.)

Схематично тепловой насос может быть представлен в виде системы, состоящей из трех контуров. В первом находится теплоноситель, переносящий энергию от источника низкопотенциального тепла. Во втором контуре циркулирует хладагент (фреон), который периодически то испаряется, отбирая тепло у первого контура, то вновь конденсируется, отдавая его третьему контуру. И, наконец, по третьему контуру «бегает» теплоприемник, в нашем случае – вода, переносящая тепло по системе отопления.

Рабочий цикл теплонасоса в общих словах может быть описан следующим образом. Жидкий хладагент поступает в испаритель, где переходит в газообразное состояние. Необходимая для протекания этого процесса энергия отбирается у теплоносителя, циркулирующего в первом контуре. Далее подогретый на несколько градусов газообразный хладагент всасывается в компрессор, главное назначение которого – сжатие газа (на совершение этой работы, разумеется, расходуется электроэнергия).

Давление газа возрастает в несколько раз, при этом он существенно разогревается: если на входе в компрессор температура хладагента составляет 6-10°C, то на выходе уже около 60°C. На следующей стадии разогретый газ направляется в конденсатор, где отдает полученное тепло системе отопления, сам же при этом конденсируется, т.е. переходит в жидкое состояние. Затем избыточное давление сбрасывается с помощью дроссельного клапана, и цикл начинается заново.

Читайте также:
Как создать весенний интерьер в офисе – советы дизайнера

Как видите, устройство теплового насоса не отличается принципиально от устройства холодильной машины. Просто основным назначением холодильных установок является генерирование холода, поэтому там отбор теплоты производится испарителем, а конденсатор лишь сбрасывает эту теплоту в окружающее пространство. В тепловом же насосе картина обратная: конденсатор представляет собой теплообменный аппарат, отдающий теплоту потребителю, а испаритель – это теплообменник, утилизирующий низкопотенциальную теплоту вторичных энергоресурсов.

Другими словами тепловой насос – это «холодильник наоборот». При этом «наоборот» не только устройство, но и результат. Если в случае холодильника тепло, отнимаемое у хранящихся внутри продуктов, выбрасывается впустую, то энергия, вырабатываемая тепловым насосом, приносит реальную пользу – тратится на целенаправленный обогрев дома.

Разновидности тепловых насосов и систем

Тепловая энергия, расходуемая на отопление здания и систему горячего водоснабжения, является результатом преобразования энергии окружающей среды, осуществляемого с помощью теплового насоса. Насос концентрирует эту низкопотенциальную (низкотемпературную) энергию и передает ее системе отопления.

Осталось разобраться, что в данном случае подразумевается под энергией окружающей среды. Большинство тепловых насосов бытового назначения позволяют использовать тепло Солнца и внутреннее тепло Земли, накапливаемые верхними слоями земной коры и водой в течение всего года.

По типу конструкции первого контура теплообменника все тепловые насосы делятся на грунтовые, водяные и воздушные.

Грунтовые тепловые насосы

Грунтовые тепловые насосы получают тепло, необходимое для подогрева хладагента в испарителе, от грунта. Температура последнего на глубине нескольких метров практически не подвержена сезонным колебаниям. По замкнутой системе труб, размещенных в грунте, циркулирует «рассол». Слово «рассол» мы не случайно взяли в кавычки: соли, как этого можно было бы ожидать исходя из названия, он не содержит.

На самом деле это антифриз на основе этиленгликоля или пропиленгликоля, реже водного этанола. Трубы теплообменника могут быть уложены в грунте как горизонтальным (горизонтальный коллектор), так и вертикальным (геотермальный зонд) способом.

Трубы горизонтального коллектора укладываются в землю на глубине ниже уровня промерзания грунта в данном регионе (обычно 1.5-2 м). Теплообменная система этого вида занимает достаточно большую площадь. Например, для обеспечения теплом сравнительно небольшого дома площадью 100 м 2 потребуется выделить 2-3 сотки земли. Следует принять во внимание, что на территории, занятой коллектором, можно сажать лишь те деревья и кустарники, корни которых не уходят в почву слишком глубоко, а располагать здесь какие-либо постройки и вовсе нельзя.

Геотермальный зонд – это теплообменник, трубы которого располагаются вертикально и погружены в грунт на глубину до 100-200 м. Количество устанавливаемых зондов зависит от требуемой мощности установки. Для обогрева дома, уже рассматриваемого нами выше в качестве примера, достаточно будет двух зондов длиной около 80 м, расположенных на расстоянии 5 м друг от друга.

Как видите, для размещения этой системы не требуется больших площадей, вы можете пробурить скважины в любой части вашего участка – там, где вам это удобно. Главный недостаток грунтовых тепловых насосов с геотермальными зондами – высокая стоимость работ по бурению скважин. Однако, невзирая на это, большинство пользователей отдает предпочтение именно этим системам, ведь геотермальные зонды обладают большей эффективностью, чем горизонтальные коллекторы, и имеют при этом меньше ограничений.


Бурение скважины для геотермального зонда.

Водяные тепловые насосы

Водяной тепловой насос «черпает» энергию грунтовых вод, которые прокачивает через свой испаритель. Подобная система отличается повышенной эффективностью и неплохой стабильностью: первая характеристика является результатом высокой теплоотдачи воды, вторая обусловлена постоянством температуры грунтовых вод.

Разумеется, чтобы использовать установку такого типа, требуется, чтобы эти самые грунтовые воды имелись на вашей территории, причем в достаточно большом количестве. Очень желательно, чтобы водоносный слой располагался не глубже 30-40 м. Одновременное выполнение этих двух условий – явление нечастое. Еще одним условием, невыполнение которого может стать препятствием для установки водяного теплонасоса в вашем доме или коттедже, является низкое содержание в грунтовых водах солей железа и прочих примесей.

Использование воды низкого качества приведет к тому, что оборудование быстро выйдет из строя, поскольку теплообменник попросту забьется. Наличие такого количества ограничений является причиной того, что подобные тепловые насосы, несмотря на всю их привлекательность, устанавливают нечасто (около 5% от всех реализованных проектов).

Воздушные тепловые насосы

С точки зрения простоты монтажа воздушные тепловые насосы обладают огромным преимуществом перед своими «собратьями». Для использования окружающего воздуха в качестве источника тепла вам не придется бурить скважины или проводить какие-то другие крупномасштабные грунтовые работы. В результате, если заложить в смету стоимость работ по установке оборудования, воздушный насос обойдется вам значительно дешевле, чем водяной или грунтовый.

Несмотря на столь весомое достоинство, идеальным этот вид климатического оборудования не назовешь, поскольку есть у него и существенный недостаток. Такой насос эффективно работает лишь при температуре окружающего воздуха выше –15°C…–20°C. Падение температуры ниже этой границы, что в зимний период не является редкостью в большинстве регионов нашей страны, ведет к существенному уменьшению коэффициента эффективности воздушного теплонасоса.

Коэффициент эффективности тепловых насосов

Чуть выше мы использовали новый термин – «коэффициент эффективности». Было бы неправильно не пояснить, что это такое, тем более что это важная характеристика тепловых насосов, позволяющая сравнивать насосы разных типов между собой.

Коэффициент эффективности (называемый также коэффициентом трансформации) – это отношение выработанной насосом тепловой энергии к потребленной им электрической. По сути это КПД теплового насоса. В случае водяных теплонасосов этот коэффициент равен 5 вне зависимости от времени года. Это означает, что при потреблении 1 кВт*ч электроэнергии установка вырабатывает 5 кВт*ч тепловой энергии.

У грунтовых насосов величина коэффициента эффективности чуть ниже – от 4 до 4.5. И, наконец, самым маленьким коэффициентом характеризуются воздушные тепловые насосы, при этом их эффективность сильно зависит от температуры окружающего воздуха: при 0°C величина коэффициента равна

Читайте также:
Как отремонтировать потолок из гипсокартона после протечки воды

3.5, а при –20°C он уже не превышает 1.5 (при такой низкой эффективности насос попросту не окупится, и имеет смысл подумать о приобретении более дешевого климатического оборудования, например электрического котла).

Некоторые менеджеры, рекламируя реализуемые ими тепловые насосы, уверяют потенциальных клиентов в том, что данное оборудование имеет КПД 400-500%. Разумеется, ни о каком нарушении законов термодинамики речи не идет. Просто в данном случае расчеты намеренно делаются неправильно: не учитываются источники энергии, отличные от потребляемого электричества, – воздух, вода или грунт, нагретые Солнцем и геотермальными процессами. Когда при расчете КПД учитывают только электроэнергию и забывают про источник низкопотенциального тепла, как раз и получается величина больше 100%.

Применение тепловых насосов в условиях российского климата

Познакомившись с приведенными выше описаниями различных типов тепловых насосов, вы без труда сами сможете ответить на вопрос, какой насос больше всего подходит для эксплуатации в условиях российского климата.

Воздушные тепловые насосы пригодны для применения лишь в ограниченном числе регионов нашей страны – там, где температура воздуха зимой почти не опускается ниже нулевой отметки. Разумеется, жителям Сибири, Дальнего Востока, севера европейской части России о воздушных тепловых насосах не стоит и размышлять.

Для применения водяных тепловых насосов есть много ограничений. О некоторых из них мы уже рассказывали, осталось упомянуть еще об одном. Более половины территории нашей страны находится в зоне вечной мерзлоты. Если даже какому-нибудь жителю Восточной Сибири или севера Дальнего Востока «повезло», и на его участке есть грунтовые воды, залегающие не слишком глубоко, то все равно эти грунтовые воды находятся в виде льда, а значит, не пригодны для использования в системе отопления.

Таким образом, большинству наших соотечественников приходится рассчитывать на единственный, беспроигрышный, вариант – грунтовый тепловой насос. При этом в условиях российского климата больше подойдет насос не с горизонтальным коллектором, а с геотермальным зондом, позволяющим достигнуть глубины, где температура грунта более стабильна.

Применение теплового насоса для охлаждения

Огромным достоинством тепловых насосов является то, что они способны не только отапливать дом, но и при необходимости охлаждать его. Наше короткое российское лето порою бывает очень жарким, и, когда ваше жилище буквально раскаляется, предложение превратить обогреватель в кондиционер будет очень кстати.

Техническое решение этого вопроса может быть интегрировано в тепловой насос изначально, на стадии изготовления, и практически у всех производителей имеются линейки насосов, умеющих кондиционировать помещение (режим Natural Cooling). Если ваш тепловой насос не обладает такими способностями, не все еще потеряно – работать на охлаждение может и обычный насос. Необходимое для этого дополнительное оборудование в виде гидравлической развязки будет смонтировано вне насоса. Оба варианта не требуют больших капиталовложений.

Нести генерируемый тепловым насосом холод непосредственно в помещение можно разными способами. Эта функция может быть возложена на холодные панели на стенах или потолке, охлаждающий теплый пол, радиаторы отопления с хорошим обдувом или же фанкойл – устройство, в чей корпус встроен обдуваемый вентилятором пластинчатый теплообменник.

Применение теплового насоса для горячего водоснабжения

Любой тепловой насос способен не только обогревать ваше жилище, но и круглогодично снабжать вас горячей водой. Однако следует учитывать, что эта система является низкотемпературной, а значит, температура воды в бойлере не превысит 45-55°C. Из этого следует, что объем бойлера должен быть больше, чем при использовании стандартной системы отопления, в противном случае вам и вашим домочадцам придется жить в условиях жесткой экономии горячей воды.

Данный факт следует учитывать при выделении площади для котельной, т. е. еще на стадии проектирования дома. Также при выборе бойлера нужно принимать во внимание, что это должно быть специальное оборудование, рассчитанное на работу с теплонасосными установками. Главное отличие такого бойлера от обычного – увеличенная площадь теплообменника, необходимая для максимально эффективной передачи тепла от теплового насоса.

Тепловые насосы со встроенным ТЭНом

Нередко производители встраивают в свои тепловые насосы дополнительные электрические нагреватели. Встроенный ТЭН позволяет в случае необходимости перейти на альтернативный с точки зрения теплового насоса источник энергии – электричество. Для чего это нужно? В каких случаях возникает потребность задействовать ТЭН?

Подбор теплового насоса для отопления дома осуществляется с учетом различных параметров, в том числе и климатических особенностей региона. При этом считается нецелесообразным устанавливать насос с избыточной мощностью. Дело в том, что экстремально холодные дни случаются не так уж и часто, по крайней мере, в центрально-европейской части России. Практика показывает, что более экономичным вариантом будет «добрать» в эти морозные периоды необходимую мощность электричеством, чем изначально устанавливать более мощный насос. Наличие ТЭНа исключает необходимость делать систему более мощной, чем это требуется большую часть отопительного сезона.

Для владельцев водяных и грунтовых тепловых насосов встроенный ТЭН – скорее излишество, чем необходимость. Совсем иначе выглядит ситуация с воздушными теплонасосами. При температуре воздуха –20°C и ниже такой насос, если и не отключится, будет малоэффективен. И пусть холодных дней и ночей в году не очень много, совсем не хочется в один прекрасный момент остаться в стремительно вымерзающем доме. Наличие дублирующего теплогенератора в данном случае никак не назовешь роскошью.


Воздушный тепловой насос.

Советы и рекомендации

Тепловой насос – оборудование технически сложное и достаточно дорогое, поэтому подходить к его выбору следует с большой ответственностью. Чтобы не быть голословными, приведем несколько вполне конкретным рекомендаций.

1. Никогда не приступайте к выбору теплового насоса без предварительного проведения расчетов и создания проекта. Отсутствие проекта может стать причиной фатальных ошибок, исправить которые можно будет лишь с помощью огромных дополнительных финансовых вложений.

Читайте также:
Как избавиться от плывуна в скважине

2. Доверить проектирование, монтаж и сервисное обслуживание теплового насоса и системы отопления следует только профессионалам. Как убедиться в том, что в данной компании работают профессионалы? В первую очередь, по наличию всей необходимой документации, портфолио реализованных объектов, сертификатов от поставщиков оборудования. Очень желательно, чтобы весь комплекс необходимых услуг предоставляла одна компания, которая в данном случае будет нести полную ответственность за реализацию проекта.

3. Советуем вам отдать предпочтение тепловому насосу европейского производства. Пусть вас не смущает тот факт, что он дороже китайского или российского оборудования. При включении в смету стоимости работ по монтажу, запуску и отладке всей системы отопления разница в цене насосов будет практически незаметна. Но зато, имея в своем распоряжении «европейца», вы будете уверены в его надежности, поскольку высокая цена насоса – это лишь результат использования при его создании современных технологий и высококачественных материалов.

Как правильно выбрать тепловой насос?

Тепловой насос — механическое приспособление позволяющее обеспечить перенос тепла от ресурса с низкой потенциальной тепловой энергией (с низкой температурой) до отопительной системы (теплоносителю) с повышенной температурой. Попробуем объяснить это более понятным языком.

Уходят в прошлое времена, когда человек отапливал свое жилище путем сжигания древесины в каминах или печах. На смену приходят многофункциональные котлы длительного горения. В регионах где доступен магистральный газ для отопления применяют эффективное газовое оборудование. В местах, не доступных для газовых магистралей, все активнее используется газгольдер.

Человечество понимает, что сжигать невозобновляемые источники энергии дело не перспективное, ресурсы постепенно истощаются. Ученые не останавливаясь ищут новые способы добычи тепловой энергии и разрабатывают современные механизмы для реализации поставленных задач.

В одном из таких проектов был сконструирован тепловой насос. Действительно, как и большинству генерирующих тепло агрегатов, функционирование теплового насоса не возможно без электрической энергии. Серьезным отличием является то, что электричество не задействовано в нагреве например ТЭНа, как в масляном радиаторе и не замыкает спираль в тепловой пушке. В тепловом насосе нет нагревательных элементов, он не создаёт тепловую энергию, тепловой насос служит лишь переносчиком её из окружающей среды до потребителя (теплоносителя).

Электричество, потребляемое тепловым насосом, затрачивается только на сжатие хладагента и его перекачку обеспечивая циркуляцию. Хладагент выступает в качестве необходимой рабочей среды, именно он перемещает тепло из окружающей среды в отопительную систему и систему горячего водоснабжения. Как подобрать тепловой насос, принцип его работы, а также узнать о плюсах и минусах подобного оборудования нам поможет этот обзор.

Тепловой насос для отопления

Традиционное отопление частного дома по прежнему остается предпочтительным, если в избытке недорогие ресурсы. Вопрос, что делать, когда доступность дешевых источников ограниченна? Альтернативным решением выступает тепловой насос — опыт эксплуатации более 40 лет в странах Евросоюза, говорит нам о том, что это может быть весьма эффективно.

В Российской Федерации тепловой насос не получил должного распространения. Причиной тому два фактора. Во первых, в избытке нефть, газ, древесина. Во вторых, останавливает высокая цена и отсутствие популяризации. Сведения о тепловых насосах, весьма скудные, принцип их работы не понятный, а о преимуществах информации недостаточно.

В Европейском союзе цены на сжигаемое топливо настолько высоки, что геотермальная система отопления показывает выгоду в эксплуатации. К примеру до 95% домохозяйств в Швеции и Норвегии используют тепловые насосы как основной источник отопления . Международное энергетическое агентство, прогнозирует что тепловые насосы к 2020 году начнут обеспечивать 10 % спроса энергии на отопление в странах организации экономического сотрудничества и развития, а к 2050 году этот показатель достигнет 30%.

Тепловой насос для отопления – принцип действия

Из школьного курса физики, вспоминая второй закон термодинамики, доподлинно известно, что тепло от горячего тела передается холодному без каких бы то ни было механизмов. Фокус в том, как передать тепло в обратном направлении? Для этого нам потребуется теплоноситель и и ряд действий обеспечивающих результат.

Именно эти действия нам и поможет совершить тепловой насос. Затраты электроэнергии на работу теплового насоса пропорционально зависят от разницы значений температур между средами, участвующих в этом процессе.

Вам доводилось дотронуться до черной решетки холодильника сзади? Убедиться в том, что задняя стенка очень горячая может любой желающий. Направив на черную решетку лазерный пирометр, видно что ее температура на поверхности составляет порядка 40°С. Таким образом, инженеры хладогенерирующего оборудования утилизируют изнутри морозильной камеры ненужное тепло.

Известно, что в конце сороковых годов прошлого столетия изобретатель Роберт Вебер обратил внимание на бесполезный обогрев воздуха радиатором холодильника. Изобретатель подумал и подсоединил к нему бойлер косвенного нагрева. В результате Роберт снабдил домочадцев горячей водой в необходимом объеме. Именно тогда, энтузиаст и задумался, каким образом “вывернуть” холодильник на изнанку и трансформировать охладительное устройство в отопительный прибор. Надо признать, у него получилось.

Как работает тепловой насос?

Принцип работы теплового насоса основывается на том, что под землей в любое время года, опустившись ниже отметки уровня промерзания мы наткнемся на температуру выше нуля. Получается, непромерзаемый земельный слой находится прямо у нас под ногами. А что, если использовать его в качестве задней стенки морозильной камеры?

Тогда морозильной камерой можно считать окружающую атмосферу. Разницу температур между ними и используют геотермальные насосы конвертируя в энергию для отопления дома .

Применяя принцип работы холодильного оборудования, для переноса тепла из подземелья в домашнее пространство используется система труб по которым осуществляется циркуляция хладагента. Хладоны Фреона нагреваются подземельным теплом и начинают испаряться. Холодный воздух снаружи его охлаждает, в результате чего фреон конденсируется.

Нагревая тепло чередуя циклы испарения и нагрева тепловой насос заставляет циркулировать хладагент. Компрессор создает давление, заставляя двигаться фреон по трубкам двух теплообменников.

Читайте также:
Квартира 45 кв. м.: 120 фото реальных проектов и планы дизайна

В первом тепловом обменнике фреон испаряется при низком давлении, во время которого происходит поглощение тепла из атмосферы непосредственного окружения. Затем тот же хладагент сжимается компрессором под высоким давлением и перемещается во вторую катушку, где он конденсируется. Затем он выделяет тепло, поглощенное ранее в цикле.

Основную роль в процессе играет повышающий компрессор. Увеличивая давление, фреон конденсируясь выдает больше жара, чем получил от теплой земли. Таким образом, грунтовые плюсовые значения в + 7°С и преобразовывается в комфортные домашние условия + 24°С.

Применяя тепловой насос для отопления, получаем высокую эффективность.

Хочется заметить, что вся конструкция не требует специально выделенной линии электропроводки. Потребляемая мощность сопоставима с расходом энергии бытового электро чайника. Фокус в том, что тепловой насос “добывает” тепловой энергии в четыре раза больше, чем потребляет электричества. На отопление коттеджа в 300 м2, в лютый – 30°С мороз будет затрачено не более 3 кВт.

Впрочем, владельцу геотермального насоса придется заметно раскошелиться в начале. Стоимость оборудования и материалов на подключение составляет не менее 4 500 долларов. Прибавим монтажные работы и бурение, еще столько же, выходит что самая простая система обойдется в 10 тысяч долларов.

Понятно, что электрический котел будет стоить дешевле на порядок. Но платить ежемесячно из расчета 1 кВт на 10 м2 придется в любом случае. Вот и получается, что на 300 кв. метров дома уйдет 30 кВт — в 10 раз больше чем будет потрачено на тепловой насос.

Расчеты по отоплению газом с помощью газового котла, дают примерно тот же порядок цифр — 2000 рублей в месяц, что сравнимо с эксплуатацией теплового насоса. К сожалению не все проживают в газифицированном районе.

Теплового насос, обладает неоспоримым преимуществом. Такую “морозильную камеру наоборот” в летний период можно “вывернуть” на изнанку и легким движением руки — тепловой насос превращается в кондиционер. На улице в жаркие деньки +30°С, а в подземелье царит прохлада. Используя трубки заполненные теплоносителем, насос перенесет холод подземелья в жилище. Далее в работу включается вентилятор, таким образом мы получаем экономную систему охлаждения.

Практика эксплуатации указывает на сроки окупаемости от 3 до 7 лет. Скандинавские страны давно посчитали прибыль и отапливаются этим методом. Ярким примером может служить гигантский тепловой насос в Стокгольме, геотермальное оборудование. Источником тепловой энергии в зимний период и прохлады в летний, служат воды балтийского моря. В полной мере к тепловому насосу относится лозунг: плати сейчас – экономь потом! Экономия становится все больше, в силу того, что энергоносители дорожают.

Тепловой насос. Правда о его эффективности.

К сожалению не все так радужно с эффективностью на сегодняшний день. Одним из главных вопросов, мучающих потребителя остается: покупать или не покупать тепловой насос. Наш совет, тщательно взвешивайте все за и против, скорее всего вариант покупки обычного электрического котла по итогам эксплуатации обойдется дешевле, а установка проще.

Если рассматривать тепловой насос как концепт будущего, как новую идею генерации тепла — однозначно инженерная мысль заслуживает уважения. Геотермальное оборудование работает, его можно потрогать руками, с каждым годом оно становится все более эффективно. Однако, если мы посчитаем, сколько денег мы потратим на его работу, прибавим первоначальные затраты на покупку и монтаж, то скорее всего получим сумму показывающую, что мы потратим на него гораздо больше финансов, чем на любой другой вид тепло генерирующего устройства.

Рассматривая тепловой насос как экономическую систему, когда затратив на его работу 100 рублей, вы получаете тепловой энергии на 300 рублей, не забывайте о том, что за право получения сверхприбыли в 200 рублей, вы заплатили большие деньги. К слову сказать, в том же Евросоюзе, продажи тепловых насосов поддерживаются государственными программами.

Так в Финляндии, ежегодно продается более 60 тысяч тепловых насосов и число продаж растет 5% темпами. Но во первых, экономический эффект применения подобного оборудования там выше по причине дорогой электроэнергии. Стоимость электроэнергии в Финляндии 35 евро центов, в сравнении с Россией – 7 евро центов. Во вторых программа субсидирования предполагает возмещение на покупку теплового насоса в размере 3 000 EURO.

До тех пор, пока существуют низкие цены на газ и электричество, внедрение теплового насоса в качестве основного конкурента остается трудно выполнимой задачей. Массовое потребление станет возможным, только в случае кризисной ситуации с добычей углеводородов или кризиса с генерацией электроэнергии.

Как правильно выбрать тепловой насос

Первый этап.

Расчет требуемого тепла для отопления дома. Чтобы подобрать тепловой насос (ТН), который входит в отопительную систему дома, важно рассчитать потребность тепла. Точный расчет позволит избежать ненужного перерасхода средств, т. к. это ведет к лишним расходам.

Второй этап.

Какой источник тепла выбрать для вашего теплового насоса. Данное решение зависит от многих составляющих, основные из них:

  • Финансовая составляющая. Сюда входит непосредственно стоимость самого оборудования, а также работы по установке геотермального зонда или укладке подземного теплового контура. Это зависит от месторасположения самого участка, а также от ближайшего окружения (водоемы, здания, коммуникации) и геологии.
  • Эксплуатационная составляющая. Основная часть расходов — это функционирование теплового насоса. Эта цифра зависит от режима отопления вашего здания и от выбранного источника тепла.

Третий этап.

Анализ исходных данных для выбора теплового насоса:

  1. Бюджет на предполагаемую систему.
  2. Отопительная система: радиаторы, воздушное отопление, теплый пол.
  3. Площадь участка, которую возможно выделить для укладки теплового коллектора.
  4. Возможно ли бурение на участке.
  5. Геология участка для определения глубины заложения геотермального зонда в случае принятия такого решения.
  6. Требуется ли кондиционирование воздуха в летний период.
  7. Имеется ли воздушное отопление или предполагается ли в будущем.
  8. Капитальная стоимость покупки и монтажа ТН со всеми работами (приблизительная первоначальная оценка).
Читайте также:
Металлический сайдинг под камень – преимущества, недостатки, советы по монтажу

Разберём всё по порядку

Бюджет на предполагаемую систему

При создании системы отопления на ТН имеется возможность устройство контура «воздух-вода». Капитальные вложения будут минимальными, т. к. не требуется проведения дорогостоящих земляных работ. Но будут высокие затраты на этапе эксплуатации данной системы отопления ввиду низкой эффективности работы.

Если же вы хотите значительно уменьшить эксплуатационные расходы, то вам подойдет установка геотермального насоса. Правда, потребуется провести земляные работы для укладки теплового контура. Также данная система позволит получать «пассивный» холод.

Отопительная система: радиаторы, воздушное отопление, теплый пол

Для увеличения эффективности системы ТН желательно уменьшить разницу между температурой нагреваемой среды и температурой источника тепла.
Если вы ещё не выбрали систему отопления, то рекомендуется выбрать теплые полы, позволяющие более эффективно использовать систему ТН.

Площадь участка, которую возможно выделить для укладки теплового коллектора

Площадь участка для установки коллектора критична в случае невозможности бурения и установки геотермального зонда. Тогда вам придется осуществить горизонтальную укладку коллектора, а это потребует пространства примерно в 2 раза больше, чем площадь отапливаемого дома. При этом надо учесть, что данную площадь нельзя использовать под застройки, а только в виде лужайки или газона, чтобы не перекрывать потоки солнечных лучей.

Возможно ли бурение на участке

При возможности проведения бурения на участке (хорошая геология, возможность подъезда, отсутствие подземных коммуникаций) лучшим решением будет установка геотермального зонда. Он обеспечивает стабильный и долгосрочный источник тепла.

Геология участка для определения глубины заложения геотермального зонда, в случае принятия такого решения

После проведения расчета общей глубины бурения необходимо изучить план участка и установить, каким образом обеспечить глубину бурения. На практике глубина одной скважины обычно не превышает 150 м.

Поэтому если, например, расчетная глубина бурения 360 м, то исходя из особенностей участка её можно разбить на 4 скважины по 90 м, или 3 по 120 м, или 6 по 60 м. Но надо учесть, что между ближайшими скважинами расстояние должно быть не меньше 6 м.
Стоимость буровых работ прямо пропорционально глубине бурения.

Требуется ли кондиционирование воздуха в летний период

Если в летнее время требуется кондиционер, то очевиден выбора ТН типа «вода-вода» или «грунт-вода», остальные тепловые насосы не готовы эффективно и экономично выполнять функции кондиционирования.

Имеется ли воздушное отопление или предполагается ли в будущем

Возможна интеграция ТН в единую систему воздушного отопления. Данное решение позволит унифицировать инженерные сети.

Капитальная стоимость покупки и монтажа теплового насоса со всеми работами

Приблизительная первоначальная оценка капитальных затрат* на покупку и монтаж зависят от типа теплового насоса:

ТН с подземным коллектором:
Оборудование и материалы — 4500 $
Работы — 2500 $
Эксплуатационные расходы — 350 $/год

ТН с зондом:
Оборудование и материалы — 4500 $
Работы — 4500 $
Эксплуатационные расходы — 320 $/год

Воздушный ТН:
Оборудование и материалы — 6500$
Работы — 400 $
Эксплуатационные расходы — 480 $/год

ТН «вода-вода»:
Оборудование и материалы — 4500 $
Работы — 3500 $
Эксплуатационные расходы — 280 $/год

Четвёртый этап. Виды работы

Одиночный. Тепловой насос является единственным источником тепла, обеспечивая 100% потребность в тепле. Работает для рабочих температур не выше 55 °С.
Спаренный. ТН и котел работают совместно, что позволяет с помощью котла получать более высокие рабочие температуры.

Моноэнергетический. ТН и электрокотел образуют энергосистему только с одним внешним источником энергии. Это позволяет плавно регулировать электропотребление, но увеличивает нагрузку на вводной автомат.

Выбор теплового насоса

После сбора всех исходных данных и проработки основных технических решений возможно выбрать подходящий тип ТН. Комплектация и выбор поставщика оборудования будет зависеть от ваших финансовых возможностей. Главное, подойти к выбору системы с полным пониманием того, чего вы хотите. Мы поможем вам выбрать и реализовать комфортную систему отопления. В ней можно учесть все нюансы: от климаторегулирующей функции до распределения тепла по зонам дома.

Заключение

Остановив свой выбор на экологической системе отопления с тепловым насосом, можно быть уверенным в завтрашнем дне. Вы получаете полную независимость от тепло снабжающих организаций, мировых цен на нефть и политической ситуации в стране. Единственно, что вам потребуется, это электроэнергия. Но со временем и получение электроэнергии можно перевести на абсолютную автономность с помощью ветряка.

Виды и принцип работы тепловых насосов для отопления дома

Научившись качать из недр земли газ и сжигать его, человечество получило две серьезные проблемы. Глобальное потепление и отравление среды обитания – слишком высокая цена комфорта. К тому же сырьевое топливо – ресурс ограниченный, запасы которого быстро истощаются. Эти факторы вызвали активный интерес к тепловым насосам – установкам, добывающим чистую энергию из земли, воды и воздуха. Без прожорливых котельных и вредных выбросов они обеспечивают жилище теплом и горячей водой.

На Западе тепловой насос для отопления дома стал таким же привычным, как кондиционер или стиральная машина. У нас этот агрегат пока еще не знаком большинству владельцев частных усадеб и дач. Познакомиться с принципом его работы, существующими разновидностями, достоинствами и недостатками вам поможет эта статья.

Как работает тепловой насос?

Самый простой пример, доступно поясняющий принцип действия тепловых насосов, – бытовой холодильник. Все мы знаем, что в его морозильной камере происходит охлаждение продуктов за счет циркуляции хладагента. Забирая внутреннее тепло, холодильник выбрасывает его наружу. Поэтому в морозильном отделении царит холод, а задняя решетка у аппарата всегда горячая.

Принцип работы теплового насоса зеркально противоположный. Забирая тепло из окружающей среды, он переносит его в дом. Образно говоря, «морозильная камера» у этого устройства находится на улице, а горячая решетка – в доме.

Читайте также:
Как убрать щель и скрип в ламинате, не разбирая пол

В зависимости от вида источника внешнего тепла и среды, собирающей энергию, тепловые насосы делятся на четыре типа:

  1. Грунт-вода.
  2. Вода-вода.
  3. Воздух-вода.
  4. Воздух-воздух.

Установки первого типа добывают тепло из земли с помощью трубчатых коллекторов или зондов. Во внешнем контуре такого насоса циркулирует незамерзающая жидкость, переносящая тепло в испарительный бак. Здесь происходит передача тепловой энергии фреону, который движется в замкнутом контуре между компрессором и дроссельным клапаном. Нагретый хладагент поступает в бак-конденсатор, где отдает полученное тепло воде, направляемой в систему отопления. Цикл теплообмена повторяется до тех пор, пока установка подключена к электросети.

Принцип работы водяного теплонасоса ничем не отличается от грунтового. Разница заключается лишь в том, что энергию ему дает вода, а не грунт.

Воздушный тепловой насос не нуждается в крупногабаритном внешнем коллекторе для сбора тепла. Он просто прокачивает через себя уличный воздух, извлекая из него драгоценные калории. Вторичный теплообмен в этом случае происходит через воду (теплые полы) или через воздух (воздушная система обогрева).

Оценивая экономическую сторону вопроса, следует отметить, что наибольших финансовых вложений требует установка «грунт-вода». Для монтажа ее теплоприемных зондов приходится бурить глубокие скважины или же вынимать грунт на большой площади для укладки коллектрора.

На втором месте стоит водяной тепловой насос, сдаваемый заказчику под ключ. Для его работы не требуется копка земли и бурение скважин. Достаточно погрузить в водоем достаточное количество гибких труб, по которым будет циркулировать теплоноситель.

Дешевле всего обходятся агрегаты «воздух-воздух» и «воздух-вода», поскольку они не нуждаются в установке внешних приемников тепловой энергии.

Особенностью монтажа большинства теплонасосных систем является их подключение не к радиаторам отопления, а к теплому полу. Это объясняется тем, что максимальный нагрев воды у них производится до температуры +45С, оптимальной для теплого пола, но недостаточной для нормальной работы радиатора.

Выгодной для владельца особенностью работы данной установки является возможность реверсного режима — перевод в жаркий период года на охлаждение помещений. В этом случае избыточное тепло поглощается трубопроводом теплого пола и отводится насосом в грунт, воду или воздух.

Упрощенная структурная схема грунтовой теплонасосной установки выглядит так:

Кроме теплового насоса, грунтового контура и теплого пола здесь мы видим два циркуляционных насоса, запорные вентили горячей воды и отопления, а также бак, аккумулирующий горячую воду для бытового использования.

Характеристики тепловых насосов

Главный показатель, по которому оценивают эффективность работы теплового насоса — коэффициент преобразования тепла, сокращенно именуемый КПТ (в английской аббревиатуре СОР). К привычному для нас КПД — коэффициенту полезного действия он отношения не имеет. КПТ (СОР) показывает, сколько киловатт энергии перекачивает насос на один киловатт полученной им электроэнергии. В зависимости от условий работы КПТ теплонасоса может составлять от 3 до 5, что без лишних дискуссий подтверждает экономическую выгоду его использования.

Наиболее стабильные показатели эффективности демонстрируют грунтовые и водяные установки, поскольку температура воды и грунта не опускается ниже нуля градусов. Агрегаты, собирающие тепло из воздуха зависят от его температуры. При минусовых отметках термометра их производительность снижается в среднем на 40-50%.

Второй рабочий параметр – мощность в киловаттах. Его подбирают, исходя из величины теплопотерь здания.

Расчет отопления дома с тепловым насосом

Для нормальной работы теплоперекачивающей установки необходима качественная теплоизоляция здания. Поэтому перед покупкой теплового насоса необходимо утеплить стены, пол и потолки, после чего выполнить расчет тепловых потерь (Q).

Упрощенная формула подсчета количества тепла (Вт), уходящего из дома через ограждающие конструкции (стены, окна, пол, потолок) выглядит так:

Q = S х (разница температур воздуха в помещении и на улице)/ Rт.

S –площадь ограждающей конструкции в м2;

Rт – тепловое сопротивление материала ограждающей конструкции (берут из таблиц СНиП по строительной теплотехнике).

Поочередно подсчитав теплопотери стен, окон, пола и потолка их суммируют и получают количество киловатт, теряемых домом за 1 час в самый холодный период года. Мощность теплонасоса должна быть не меньше суммарной величины теплопотерь. Если кроме отопления установка будет греть воду для бытовых нужд, то ее мощность увеличивают на 20%.

Выбирая теплонасос «воздух-воздух» или «воздух-вода» следует ориентироваться на тепловую мощность, которую он развивает в области низких температур, поскольку она значительно ниже мощности при работе в теплый период года.

В качестве примера приведем параметры воздушно-водяной установки NIBE FIGHER F2300-14. Работая в температурном диапазоне от +7 до + 45С, она выдает около 18 кВт, а при температуре воздуха -15С всего 10,7 кВт.

Известные бренды и ориентировочные цены

Рынок теплонасосного оборудования в России сформирован. Лидирующие позиции здесь занимают зарубежные компании, такие как: Nibe (Швеция), Mitsubishi Electric (Япония), Danfoss (Дания), Vaillant (Германия), Viessmann (Германия), Mammoth (США) и другие. Не уступает по соотношению «цена-качество» именитым брендам продукция российского производства (торговые марки Henk и SunDue).

Ориентировочная цена (на 2016 год) импортного теплового насоса «грунт-вода» мощностью 10 кВт, рассчитанного на обогрев дома площадью 100 м2 (без монтажа) составляет 500 000 рублей. За работы по бурению скважин, монтажу труб и пусконаладку придется доплатить в среднем от 80 000 руб не включая дополнительные материалы.

Отечественная техника дешевле. Цена аналогичного по параметрам российского теплонасоса около 360 000 рублей. Его покупка с монтажом под ключ будет стоить около 430 000 рублей. Ориентировочная цена 10 киловаттного теплонасоса «воздух-вода» от 270 000 руб. Средняя стоимость данного агрегата с установкой под ключ составляет 320 000 рублей.

Отзывы реальных владельцев этого вида техники в абсолютном большинстве положительные. В них отмечается надежная работа геотермальных тепловых насосов и низкие эксплуатационные затраты (обслуживание, электроэнергия).

Опасения тех, кто пока еще размышляет о покупке теплонасоса «воздух-вода» исходя из практики использования данной техники не оправдываются. Эти агрегаты стабильно выдают тепло вплоть до температуры наружного воздуха -25С.

Читайте также:
Как сделать геотермальное отопление дома – принцип работы, варианты устройства своими руками

Самостоятельное изготовление теплового насоса

Учитывая достаточно высокую стоимость данного оборудования у многих самодельщиков возникает соблазн собрать его своими руками, используя подручные агрегаты и комплектующие. Что следует сказать по этому поводу?

Данная работа включает два основных этапа: подготовку внешнего контура и сборку самой теплонасосной установки. Своими силами можно выкопать траншеи для укладки труб. Сделать без спецоборудования 50-метровую скважину для монтажа зонда нереально. Поверхностная укладка коллектора, как утверждают специалисты, невыгодна, поскольку не дает достаточно тепла для стабильной работы установки.

Теперь посмотрим, можно ли собрать тепловой насос своими руками. Для этого нужен практический опыт мастера-холодильщика, поскольку заполнение системы фреоном и ее опрессовку новичок выполнить не сможет.

Изготовление установки на базе агрегатов от старого холодильника или кондиционера можно рассматривать лишь как демонстрационный вариант, не имеющий практической ценности из-за низкой эффективности.

В интернете тиражируется руководство по сборке теплового насоса на базе компрессора от кондиционера, емкости из нержавейки (конденсатор) и пластиковой бочки (испаритель). Рассказав, как накрутить медные трубки на баллон и закрепить компрессор на стене, автор заканчивает свое повествование советом после завершения сборки обратиться к мастеру, который согласится выполнить пусконаладку и исправить все допущенные самодельщиком «косяки». Назвать эту инструкцию серьезным подспорьем для самостоятельной работы нельзя.

Внутренне устройство и принцип действия счетчика тепла

Они имеют стандартную конструкцию и состоят из датчика измерения расхода, двух щупов для определения температуры воды и вычислительного блока. Выпускаются в единой или модульной сборке, что зависит от вида тепломера.

  1. Квартирные и индивидуальные счетчики отопления производятся цельными. В них все части соединены неразъемно и не могут быть заменены. Стоят такие устройства недорого.
  2. Промышленные и общедомовые учетные аппараты бывают модульными. Каждый узел в них закладывается отдельно и при неполадках подлежит замене. То есть они отличаются гибким подходом к комплектующим.

Вычислитель

Этот узел выполняет анализ поступающих данных и выясняет количество потребленного тепла. В крупных и малых теплосчетчиках он различается дополнительным модулем передачи информации, глубиной архива и набором функций. В остальном оба варианта идентичны по строению. А вот запитываются они по-разному:

  • общедомовые и промышленные счетчики тепла оборудуются внешним или автономным питанием;
  • квартирные счетчики тепловой энергии работают лишь от батареи, период действия которой составляет 5 и более лет.

Температурный датчик

Обычно их два – на входе и выходе водяного потока. Они представляют собой щупы с платиновым термосопротивлением, которое может быть разным и обозначается в зависимости от величины – например, как Pt10000, Pt1000, Pt500 или Pt100. Цифры указывают на уровень электрического сопротивления в Омах при нуле градусов. Для индивидуальных устройств, где объем подсчитываемого для обогрева тепла мал, подходят любые датчики.

Модуль расхода

Каждый вид теплосчетчиков отличается собственной конструкцией этого элемента, поскольку по принципу действия они бывают механическими, ультразвуковыми, вихревыми и электромагнитными.

Механический счетчик отопления содержит в проточной части несколько подвижных элементов – в частности, роторную крыльчатку. Под давлением воды она приходит в движение и запускает счетный механизм. Именно по количеству вращений вычислительный узел отмеряет объем прошедшего по системе теплоносителя. Прибор также оснащен комплектом сетчатых фильтров, которые защищают его от попадания абразивных частиц и мелкого мусора.

Ультразвуковой счетчик тепловой энергии обеспечен расходомером в форме гладкой трубки, поэтому не имеет подвижных деталей. В ней расположены ультразвуковые датчики (два): один выполняет функцию излучателя (отправляет сигал), второй – приемника (принимает его). Время прохождения ультразвуковой волны служит основой для определения расхода теплоносителя.

Электромагнитный счетчик тепла оборудован катушкой с электромагнитами, которая измеряет проходящий по трубам и радиаторам поток. Когда вода попадает в зону магнитного поля, она формирует импульсы. Именно их сила служит базой для подсчета объема. Затем данные передаются на вычислитель.

Вихревой теплосчетчик содержит в проточной области треугольную призму, электрод и магнит. Учет расхода рабочей жидкости происходит благодаря ее передвижению по завихренной дорожке, давление которой и позволяет установить точные показания.

Дисплей

После того как вычислитель обрабатывает сведения, поступившие от счетчика и температурных датчиков, он выводит информацию на экран. В некоторых вариантах его функцию выполняет оптический интерфейс, но конструкция более современных моделей включает по большей части дисплей. Конечная цифра фиксируется в калориях (точнее в гигакалориях – Гкал).

Принцип работы счетчиков отопления

Независимо от разновидности, все теплосчетчики используют для определения данных 2 показателя:

  • объем теплоносителя, который прошел по системе;
  • изменение температуры воды при входе и выходе из труб.

Учитывая это, главный принцип действия теплоизмеряющих устройств одинаковый. Разница лишь в форме получения информации.

Механические счетчики работают как водомер, дополненный двумя щупами для установления температуры воды. Ключевая роль отведена вращающейся крыльчатке. То есть это приборы с подвижными элементами, следовательно, они более всего склонны к повреждению и к сокращению срока эксплуатации.

Электромагнитные тепломеры задействуют магнитные поля, внутри которых находится теплоноситель. Они измеряют разность потенциалов на электродах подсоединенного к ним счетчика. Объем потребленной теплоэнергии автоматически определяется расчетным методом.

Ультразвуковые аппараты работают на принципе отслеживания скорости ультразвука, который движется от излучателя к приемнику через поток воды. Разбежка между ними служит основой для калькуляции окончательных данных.

Вихревые счетчики тепловой энергии искусственно формируют вихрь в теплоносителе. А затем по его давлению автоматически вычисляют объем проходящей по трубам жидкости. Как и в предыдущих случаях, эти данные отправляются в вычислительный модуль.

Как работает теплосчетчик, принцип работы и устройство счетчика тепла

Что такое теплосчетчик

Теплосчетчик – это прибор учёта потреблённого тепла. С помощью этого устройства можно сэкономить свои деньги, так как вы будете платить не по сомнительным нормативам, а только за тепло, которое потребили сами. Никаких переплат.

Читайте также:
Какой толщины брать клееный брус на дом для постоянного проживания

Как среди множества моделей изделия выбрать ту, которая подойдет именно вам? Важно не упустить ни одной детали: оценить место установки, проанализировать конструкцию тепловых сетей, изучить особенности монтажа индивидуального изделия, заключить договор с со специализированной компанией, занимающейся обслуживанием устройства. Из-за возможных сложностей некоторые люди так и не решаются приобрести счетчик отопления.

Несмотря на многообразие моделей, отличающихся параметрами и устройством, имеющих преимущества и недостатки, принцип работы индивидуального счетчика отопления одинаков. Это изделие, измеряющие температуру, а также расход воды на входе и выходе трубопровода объекта теплоснабжения.

Состав теплосчетчика

Состав счетчика отопления достаточно прост. В изделие входит:

Вычислитель количества теплоты

Датчики избыточного давления

Центральный компонент прибора – тепловычислитель. Основные преимущества данных вычислителей:

Удобны в использовании.

Вычислители наделены выходами для подключения компьютера, модема или принтера. Это обеспечивает дистанционное получение данных по потреблению тепла и параметрам теплоносителя.

Принцип работы теплосчетчика

Принцип работы индивидуального изделия построен на вычислении величины тепла при помощи данных, которые поступают от датчика расхода теплоносителя и двух датчиков температуры. Измеряется количество воды, проходящее через систему отопления. Также учитывается разница между температурой на входе и температурой на выходе.

Количество теплоты рассчитывается по следующей формуле:

Q = G * (t1 – t2), гКал/ч, где:

G – массовый расход воды, т/ч;

t1,2 – температура на входе и выходе, °С.

На вычислить поступают все данные с датчиков. Затем происходит обработка полученной информации. После определения значения потребления тепла вычислитель записывает данные в архив. Потребленное тепло отображается на дисплее устройства. Не составит труда снять показания прибора.

Точность теплосчетчика и его погрешности

Ни один точный прибор не застрахован от погрешностей. Теплосчетчик не стал исключением. Суммарная погрешность при измерении тепла состоит из погрешностей:

Допустимая погрешность теплосчетчиков, установленных в квартирах, составляет не более 10%. Однако эта цифра может быть выше. На увеличение реальной погрешности измерений по сравнению с базовой оказывают влияние следующие возможные факторы:

Неправильный монтаж, который не соответствует требованиям производителя. Особенно часто эта проблема встречается у людей, которые воспользовались услугами нелицензионной организации. В этом случае изготовитель не берет на себя обязательства по гарантии.

Амплитуда температуры на входе и на выходе теплоносителя не достигает 30 градусов.

Трубы плохого качества, жёсткая вода с механическими примесями, которая используется непосредственно в теплоносителе.

Когда расход теплоносителя составляет значение ниже установленного минимального, которое зафиксировано в технических характеристиках прибора.

В чем измеряется потреблённое тепло

Потребленное тепло измеряется в гигакалориях (Гкал). Данная единица измерения примеряется уже достаточно давно. Однако она принадлежит к внесистемным. Теплосчетчики, которые производят в европейских странах, расчёт тарифа потреблённого тепла вычисляют в ГигаДжоулях (система СИ). Иногда встречается и общепринятая международная внесистемная единица измерения кВт*ч (kWh).

Затруднений при расчете платы за отопление, связанных с различием систем измерений ресурсоснабжающих организаций, возникнуть не должно. С помощью специального коэффициента одну единицу измерения можно с лёгкостью перевести в другую.

Как правильно передать показания

Хотя теплосчетчик имеет простой и понятный интерфейс, владелец прибора нередко сталкивается с проблемой передачи показаний. Некоторые пользователи квартир не понимают, как функционирует прибор учёта, как снимать и отправлять данные с дисплея.

Чтобы избежать возможных трудностей, нужно внимательно ознакомиться с паспортом изделия. В инструкции даны ответы на самые распространённые вопросы, подробно описаны характеристики теплосчетчика, а также тонкости, связанные с его обслуживанием.

Выделяют несколько способов съема показаний с прибора учёта:

Если у теплосчетчика жидкокристаллический дисплей, то необходимо визуально зафиксировать данные измерений. Для этого важно перейти в нужный раздел меню при помощи специальной кнопки.

ОРТО-передатчик. Он входит в базовую комплектацию устройств, произведенных в Европе. С помощью этого метода пользователь может перебросить на компьютер данные о функционировании теплосчетчика, а также распечатать их при необходимости.

Радиомодуль. Эта комплектующая деталь входит в состав некоторых устройств. При помощи беспроводного метода радиомодуль дистанционно передаёт данные. Когда приёмник попадает в зону функционирования сигнала, данные об измерениях показаний записываются и передаются в ресурсоснабжающую организацию. Часто приёмник закрепляют на машинах, оказывающих коммунальные услуги. Например, когда мусоровоз следует по заданному маршруту, он собирает показания с оказавшихся в радиусе действия приборов учёта.

M-Bus модуль. В отдельных приборах учёта входит в поставку. Цель M-Bus модуля – подключение теплосчетчика к сети централизованной системы по сбору показаний ресурсоснабжающими организациями. С помощью кабелей “витая пара” группу теплосчетчиков объединяют в слабо очную сеть. Далее присоединяют к концентратору, задачей которого является периодический опрос. Затем происходит формирование отчета, который и отправляется в ресурсоснабжающую организацию. Кроме того, данные можно вывести на экран компьютера.

Виды счетчиков тепла

Существуют следующие виды теплосчетчиков:

Тахометрический или механический.

Рассмотрим каждый вид более подробно.

Тахометрический или механический

Прибор с помощью вращающейся детали измеряет величину теплоносителя, который прошёл через сечение трубы. Активная часть устройства бывает турбинной, винтовой и в форме крыльчатки.

У тахометрических теплосчетчиков доступная цена. Несомненным плюсом устройства является простота в применении. Однако у этих приборов учёта есть и существенные недостатки. Тахометрические счетчики тепла крайне чувствительны к загрязнениям. Внутри механизма нередко оседает пыль, грязь, появляется ржавчина. Также не редки случаи гидроударов. Чтобы уменьшить загрязнение составляющих деталей, производитель разработал специальный магнито-сетчатый фильтр. У теплосчетчиков отсутствует способность сохранять данные, которые собраны за сутки.

Электромагнитный

Плюсом теплосчетчика является его высокая точность. Существенный недостаток – высокая цена. Состав прибора учёта:

В основе работы электромагнитного счетчика отопления лежит принцип прохождения через поток теплоносителя магнитного поля, которое даёт реакцию на его состояние. Устройству необходим тщательный уход. Электромагнитный теплосчётчик не будет работать с высокой точностью без регулярного обслуживания и периодической очистки.

Читайте также:
Как подготовить потолок под покраску водоэмульсионной краской: нужно ли смывать своими руками и как правильно, затирка бетонного, чем мыть и как, видео

Ультразвуковой

Данный вид приборов учёта используется в основном в качестве общедомового теплосчетчика. Среди ультразвуковых устройств выделяют следующие подвиды:

Спецификой ультразвуковых приборов учёта является то, что теплосчетчики работают по принципу генерации ультразвука, который проходит через воду. Передатчик генерирует сигнал. После того как сигнал прошёл через толщу воды, его улавливает приёмник. Основным условием высокой точности и отсутствия погрешностей ультразвукового теплосчетчика является достаточная чистота теплоносителя.

Вихревой

В основе работы вихревого теплосчетчика лежит принцип измерения величины и скорости вихрей. Преимуществом данного вида прибора учёта является то, что он менее чувствителен к загрязнением, чем остальные устройства. Однако вихревой счётчик отопления не терпит воздуха в системе. Данное устройство монтируют горизонтально, располагая его между двумя трубами.

Принцип работы теплосчётчика

Принцип работы теплосчётчика основан на вычислении количества тепла с использованием данных полученных от датчика расхода и двух датчиков температуры. Счётчик замеряет количество воды поступившее в систему отопления, температуру воды на входе и выходе из системы отопления.

Количество тепла определяется как произведение расхода теплоносителя прошедшего через систему отопления и разницы температур на входе и выходе из неё.

Q = G · (t1 – t2), Гкал/ч

где
G – массовый расход теплоносителя, т/ч;
t1 и t2 – температуры теплоносителя на входе в систему и на выходе из неё соответственно, °C.

Данные о расходе передаются на вычислитель от датчика расхода, данные о температуре передаются от двух датчиков температуры один из которых, устанавливается в подающий трубопровод системы отопления, а второй в обратный.

Вычислитель теплосчётчика на основе полученных данных определяет потреблённое количество тепла и заносит эти данные в архив. Данные о потреблённой тепловой энергии отображаются на жидкокристаллическом экране, либо могут быть сняты при помощи стандартного оптического интерфейса.

Что влияет на точность теплосчётчика

Погрешность счётчика при вычислении потреблённого тепла зависит от погрешностей расходомера, датчиков температуры и вычислителя обрабатывающего собранные величины.

Для квартирного учёта применяются счётчики с допустимой погрешностью при вычислении количества тепла в диапазоне от +/-6 до +/-10%. Подробнее о классах точности и погрешностях прибора найдёте в разделе Технические характеристики теплосчётчиков.

Реальная погрешность может быть больше базовой обусловленной техническими характеристиками комплектующих элементов. Погрешность прибора увеличивается если:

  • Разница температур между входом и выходом из системы составляет меньше 3°C.
  • Расход теплоносителя ниже минимального расхода указанного в технических характеристиках прибора.
  • Монтаж выполнен с нарушениями требований изготовителя (большинство производителей снимают с себя гарантийные обязательства, если счётчик был установлен нелицензированной организацией).

А вот и неприятный момент для любителей магнитного торможения прибора — современные счётчики тепла защищены от магнитных полей.

В чём измеряется потреблённое тепло

При расчёте тарифа, в качестве единицы тепловой энергии принята гигакалория (Гкал). Однако Гкал является внесистемной единицей измерения, которая широко использовалась ещё со времён СССР и осталась в наследие постсоветским странам.

Большинство теплосчётчиков изготавливаются в европе и при вычислении потреблённого тепла используют единицу внесённую в международную систему СИ – гигаджоуль (Gj) или общепринятую международную внесистемную единицу – киловатт час (kWh). Счётчики ведущие учёт в гигакалориях представленные на нашем рынке, изготавливаются либо в Украине, либо на отдельной линии для украинского потребителя, что вряд ли является их положительной особенностью.

Указанное различие не становится препятствием в расчётах с теплоснабжающей организацией, потому что и гигаджоули и киловатт часы переводятся в гигакалории простым умножением на коэффициент.

Съём данных с теплосчётчика

LCD дисплей все теплосчётчики оборудованы экраном для визуального съёма показаний простым переключением одной кнопкой между разделами меню.

OPTO передатчик включён в базовую комплектацию большинства приборов европейского производства и предназначен для съёма показаний с помощью OPTO головки и вывода их на ПК. Как правило OPTO датчик используется для получения и распечатки расширенных данных о работе теплосчётчика.

M-Bus модуль может входить в поставку счётчика и предназначен для подключения прибора в проводную сеть централизованного сбора показаний теплоснабжающей организацией. Несколько приборов объединяются в слаботочную (39V) сеть с помощью витой пары и подключаются к концентратору который опрашивает их с определённой периодичностью, формирует отчёт и выводит его на ПК, либо пересылает в теплоснабжающую организацию.

Radio модуль, также может входить в поставку теплосчётчика и предназначен для беспроводной передачи данных по радио частоте на расстояние до нескольких сотен метров. Инспектор с приёмником настроенным на заданную частоту, попадая в радиус действия прибора фиксирует полученные показания и передаёт их в теплоснабжающую организацию.

В некоторых европейских странах сбор показаний с приборов учёта возложен на службу сбора бытовых отходов, приёмник закрепляют на мусоровоз двигающийся по фиксированному маршруту и опрашивающий приборы установленные в этом районе.

Регистрация ошибок

Все счётчики тепла оборудованы системой самотестирования на наличие ошибок. Вычислитель с заданной периодичностью опрашивает присоединённые датчики и в случае их повреждения регистрирует ошибку, код ошибки выводит на дисплей и заносит данные о её появлении в архив.

Ниже приведены некоторые из возможных ошибок регистрируемых теплосчётчиком:

  • Повреждение датчика температуры
  • Повреждение датчика расхода
  • Неправильный монтаж датчиков температуры
  • Неправильный монтаж датчика расхода
  • Наличие воздуха в проточной части
  • Слабый заряд элемента питания
  • Положительная разница температур при отсутствии расхода на протяжении более 1 часа.

Архивирование показаний

Все тепловые счётчики фиксируют в архиве данные о накопленных значениях тепловой энергии, объёма и времени работы с ошибкой на заданный день месяца.

В некоторых теплосчётчиках можно настроить дату записи показаний, а в некоторых ещё и частоту. В Украине представлены тепловые счётчики с глубиной архива от 12 месяцев.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: